
Heterogeneous Computing
Made Easy:
Qualcomm® Symphony
System Manager SDK

Wenjia Ruan
Sr. Engineer, Advanced Content Group

Qualcomm Technologies, Inc.

May 2017

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

2

Heterogeneous Computing
High Performance in a power constraint environment

Increasing performance

Decreasing energy consumption

Power/Energy/Thermal

P
e

rf
o

rm
a

n
c
e

Multi-core

big.LITTLE Multi-core

3

Symphony System Manager

• Designed to Simplify heterogeneous computing, i.e.

use all execution units, on devices with Qualcomm®

Snapdragon Mobile Platform

• Abstracts task scheduling, memory management, and

kernel synchronization across the CPU, GPU, and

DSP

• Integrates with OpenCL, OpenGL ES, and OpenDSP

• Supports cool running devices with long battery life

through power and affinity APIs

A heterogeneous computing solution

CPU CPU CPU CPU GPU DSP

Android OS

OpenGL
OpenDS

P

Symphony
Power APIs

Symphony Tasks

Symphony Patterns

Domain Specific Libraries

Symphony Scheduler

OpenCL

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc.

4

Components

compute

control

data

Power: Control power dissipation to achieve quality of serviceplatform

Kernel: Computation to be executed on the CPU/GPU or DSP

Buffer: Array-like data structure transparently accessible across CPU/GPU or DSP

Pattern: Implicit parallelism through structured control flow and data access

Task: Computation construct bound with data; asynchronously executed

Affinity: Controls specific CPU cores/controls for use

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

5

Focus on algorithms and application logic, not on the hardware specs

Workflow

Map existing
logic to
Parallel
Patterns

Use Tasks
and Groups,
as needed

Use Power
Management

APIs

Incorporate
Affinity

Management
APIs, if
needed

Link App
with

Symphony
System

Manager

6

Easy to import existing OpenCL/OpenGL kernels into Symphony

Kernels: GPU kernels – Qualcomm ® Adreno™ GPU

#define OCL_KERNEL(name, k) std::string const

name##_string = #k

OCL_KERNEL(vadd_kernel,

__kernel void vadd(__global float* A,

__global float* B,

__global float* C)

{

unsigned int i = get_global_id(0);

C[i] = A[i] + B[i];

});

// Create kernel using OpenCL string

auto gk = symphony::create_gpu_kernel

<symphony::buffer_ptr<float>,

symphony::buffer_ptr<float>,

symphony::buffer_ptr<float>>

(vadd_kernel_string, “vadd”);

const char *vadd_shader_code = R"GLCODE(

#version 310 es

precision highp float;

layout(local_size_x = 16) in;

…

void main() {

uint i = gl_GlobalInvocationID.x;

output_data.elements[i] =

input_data0.elements[i] +

input_data1.elements[i];

}

)GLCODE";

// Create kernel using OpenGL string

auto gk = symphony::create_gpu_kernel

<symphony::buffer_ptr<float>,

symphony::buffer_ptr<float>,

symphony::buffer_ptr<float>>

(symphony::gl, vadd_shader_code);

OpenCL OpenGL

Qualcomm Adreno is a product of Qualcomm Technologies, Inc.

7

Kernels: Poly kernels
Write many, run somewhere

• Programmer/compiler specifies multiple implementations of the same algorithm, e.g. sorting

• Each implementation tailored to specific device: CPU/GPU/DSP

• Symphony dispatches implementation best suited to runtime conditions such as load on each device,

thermal, etc.

auto t = symphony::beta::launch(std::tuple(ck, gk, hk), args…);

…

t->wait_for();

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

8

big CPU

Late Binding Based on Relative Speed of Execution of Computational Resources

LITTLE CPU GPU DSP

Ver 0
Ver 1

Ver 2

Ver 3

Poly Task
Ver i = Version i

Kernels: Poly kernels

Scheduling technique: Alternative encoding + Idempotent scheduling + Deferred

finish

Write many, run somewhere

9

#define OCL_KERNEL(name, k) std::string
const name##_string = #k

OCL_KERNEL(vadd_kernel,
__kernel void vadd(__global float* A,
__global float* B, __global float* C) {

unsigned int i = get_global_id(0);
C[i] = A[i] + B[i];

});

// GPU implementation

• C++, OpenCL C, QUALCOMM® Hexagon™ DSP C99 are all “C” code

• Point Kernel captures algorithm at a point in an iteration space

• Point Kernel defines a pure data-parallel programming model and is expressed in C99 (with some restrictions)

SYMPHONY_POINT_KERNEL_1D_6(vadd, int i, first, last,
const float*, a, int, na, const float*, b, int, nb, float*, c, int, nc, {c[i] = a[i] + b[i];});

Kernels: Point kernels
Write once, run everywhere

Auto-generate vadd_pk (point kernel)

symphony::hexagon_kerne
l(
…
// DSP implementation
)

symphony::cpu_kernel(
…
// CPU implementation
)

Qualcomm Hexagon is a product of Qualcomm Technologies, Inc.

10

SYMPHONY_POINT_KERNEL_1D_6(vadd, int i, first, last,
const float*, a, int, na, const float*, b, int, nb, float*, c, int, nc,

{c[i] = a[i] + b[i];});

auto vadd_pk = symphony::beta::create_point_kernel<vadd_type>();

auto pfor = symphony::beta::pattern::create_pfor_each(vadd_pk, buf_a, buf_b, buf_c);

pfor(range_1d);

symphony@snapdragon820$top

CPU0 [===================================] 97%
CPU1 [=============================] 86%
CPU2 [=================================] 92%
CPU3 [====================================] 99%

GPU [==============================] 87%
DSP0 [===========================] 80%

DSP1 [===================================] 97%

DSP2 [===================================] 93%

Kernels: Point kernels
Write once, run everywhere

11

Patterns
A pattern is a commonly occurring combination of control and data accesses

Pattern Name Description

symphony::pfor_each Processes the elements of a collection in parallel

symphony::ptransform Performs a map operation on all elements of a collection, returns a new collection

symphony::pscan Performs and in-place parallel prefix operation for all elements of a collection

symphony::preduce Combines all the elements in a collection into one using an associative binary operator

symphony::pdivide_and_conq
uer

Divides problem into sub-problems, solves them, and merges their solutions in parallel

symphony::pipeline A sequence of processing stages that can execute concurrently on a data stream

12

Boosting performance using pfor_each with a simple change

Patterns

void foo(vector const& a, vector const& b, vector &c) {

for(size_t i = 0; i < b.size(); ++i) {

c[i] = alpha * a[i] + b[i];

}

}

void foo(vector const& a, vector const& b, vector &c) {

symphony::pfor_each(0, b.size(), [&](size_t i) {

c[i] = alpha * a[i] + b[i];

});

}

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

13

Programmer hints: pattern tuner settings
Customize pattern execution by using the Symphony System Manager tuner object

Member Function Description

set_chunk_size (size_t sz)
Smallest granularity for load balancing. If computational kernel is small (e.g., parallel

sum in preduce), set a large chunk size to minimize the synchronization overhead.

set_max_doc (size_t doc) Max degree of concurrency, default is set to the number of available device threads.

set_static () Use a static chunking algorithm as the parallelization backend.

set_dynamic () Use a dynamic workload balancing algorithm as the parallelization backend.

set_serial () Call the serial version of the computation.

set_shape(pattern::shape shape) Set shape of workload distribution across range of work-items

set_cpu_load() Set fraction of workload to schedule on CPU

set_gpu_load() Set fraction of workload to schedule on GPU

set_dsp_load() Set fraction of workload to schedule on DSP

14

SYMPHONY_POINT_KERNEL_1D_6(vadd, int i, first, last,
const float*, a, int, na, const float*, b, int, nb, float*, c, int, nc,

{c[i] = a[i] + b[i];});

auto vadd_pk = symphony::beta::create_point_kernel<vadd_type>();

auto pfor = symphony::beta::pattern::create_pfor_each(vadd_pk, buf_a, buf_b, buf_c);

pfor(range_1d, symphony::pattern::tuner().set_cpu_load(20).set_gpu_load(70).set_dsp_load(10));

Programmer hints: pattern tuner settings
Customize pattern execution by using the Symphony tuner object

20% of all iterations in range_1d go to the CPU

70% iterations go to the GPU, and

10% iterations go to the DSP
Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

15

Uniform access from host code and across tasks

Data: buffers for heterogeneous computing

Create a buffer with 100 floats

auto b = symphony::create_buffer<float>(100);

Access directly from host

for(int i = 0; i < b.size(); i++)

b[i] = i;

Access within tasks across devices

auto cpu_task = symphony::launch(cpu_kernel, b);

auto gpu_task = symphony::launch(gpu_kernel, range, b);

auto hexagon_task = symphony::launch(hexagon_kernel, b);

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

16

1. Create buffers

2. Initialize buffers

3. Launch task

4. Wait for completion of task

Homogeneous task graph - CPU

auto buf_a = symphony::create_buffer<float>(1024);

auto buf_b = symphony::create_buffer<float>(buf_a->size());

auto ck = [](symphony::buffer_ptr<float> a, symphony::buffer_ptr<float> b){

for (size_t i = 0; i < a->size(); ++i) {

a[i] = i;

b[i] = a->size() - i;

}

};

auto init_task = symphony::launch(ck, buf_a, buf_b);

init_task->wait_for();

CPUt1

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

17

1. Create buffers

2. Initialize buffers

3. Create GPU Kernel; add vectors on GPU ; buf_c = buf_a + buf_b

4. Create dependency and launch work

Heterogeneous task graph – CPU + GPU

auto buf_a = symphony::create_buffer<float>(1024);

auto buf_b = symphony::create_buffer<float>(buf_a->size());

auto ck = [](symphony::buffer_ptr<float> a, symphony::buffer_ptr<float> b){

for (size_t i = 0; i < a->size(); ++i) {

a[i] = i;

b[i] = a->size() - i;

}

};

auto buf_c = symphony::create_buffer<float>(buf_a->size());

auto gk = symphony::create_gpu_kernel<…>(vadd_kernel_string, “vadd”);

auto vadd_task = symphony::create_task(gk, symphony::range<1>(1024), buf_a, buf_b, buf_c);

auto init_task = symphony::launch(ck, buf_a, buf_b);

init_task->then(vadd_task);

vadd_task->launch();

vadd_task->wait_for();

CPU

GPU

t1

t2

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

18

Comparison with OpenCL (Vector Add)
foo(float *a, float *b, float *c, int size) {

cl::Buffer buf_a(…, UHP, size, a);
cl::Buffer buf_b(…, UHP, size, b);
cl::Buffer buf_c(…, UHP, size, c);

queue.enqueueWriteBuffer(buf_a, …, a);
queue.enqueueWriteBuffer(buf_b, …, b);
kernel.setArg(0, buf_a);
kernel.setArg(1, buf_b);
kernel.setArg(2, buf_c);
kernel.setArg(3, size);
queue.enqueueNDRangeKernel(kernel,

cl::NullRange,
cl::NDRange(size),
cl::NullRange);

queue.finish();
queue.enqueueReadBuffer(buf_c, …, c);

}

foo(float *a, float *b, float *c, int size) {

auto buf_a = symphony::create_buffer(a, size, false);
auto buf_b = symphony::create_buffer(b, size, false);
auto buf_c = symphony::create_buffer(c, size, false);

auto t = symphony::launch(kernel,
symphony::range<1>(size),
buf_a, buf_b, buf_c, size);

t->wait_for();
buf_c.ro_sync();

}

Launch

Wait for results

Qualcomm Symphony System Manager SDK is a product of Qualcomm Technologies, Inc.

Power Management

20

Symphony Power API

CPU/GPU Core & Frequency Control

• APIs available to programmer to help make these decisions runtime

• Static Power Management (CPU and GPU)

◦ User chooses amongst 5 predefined power modes

• Dynamic Power Management:

◦ Minimize energy consumption while preserving user-defined Quality of Service

◦ Works well with “main loop” based applications (games, streams, …)

symphony::power::request_mode(mode, duration, device_set)

symphony::power::set_goal(desired, tolerance) // Before the main loop

symphony::power::regulate(measured) // Within the main loop

symphony::power::clear_goal() // After the main loop

Real world use cases

23

Virtually always-on HD security camera
Custom software-based H264 video encoder needing to operate 24x7 at 30fps

Before
Symphony

After
Symphony

Min. frame rate <18 fps 30 fps

Cores used 4 LITTLE + 4 big 4 LITTLE + 2 big

Thermal alarms
1 every ~1000

frames
None

Processor
throttling

Yes No

• Few lines of code change to use specific CPU

cores using Symphony System Manager SDK

• Simple tuning process using Symphony APIs

• Platform: Snapdragon Platform (810)

LITTLEbig LITTLEbig

24

Input Preprocess 1 Preprocess 2

Low light camera
Split data path so CPU and GPU can process images at the same time

Process 1 Process 2
(Chroma)

Process 3
(Chroma)

Process 2
(Luma)

Process 2
(Luma)

CPU

GPU

Before Symphony
After
Symphony

Processing time >8.0s 1.3s

Max. Power 3.6W 2.5W

• Few lines of code change to offload Luma

processing to GPU

• 6.1x Performance gain

• 72% Energy Savings

• Simple tuning process using Symphony APIs

• Platform: Snapdragon Platform (808)

LITTLEbig LITTLEbig GPU

25

Bilateral Filter
Edge Preserving Low-Pass Filter – Compute Intensive Image Processing Algorithm

0

2

4

6

8

10

12

14

16

CPU (sequential) Symphony GPU
tasks

Symphony Hetero
Pipeline

Improvement using Symphony

Speedup (1x) Energy (Joules)

Without
Symphony

Using Symphony

GPU Offload Pipeline Pattern

Speedup - 7.6x 13.4x

Energy 4.92J 0.87J 0.87J

• Significant performance and energy savings

• Symphony heterogeneous pipeline pattern - Offload

specific stages of a pipeline to GPU

• Symphony texture object

• Platform: Snapdragon Platform (821)

GPULITTLEbig LITTLEbig

Image source: Bilateral Filtering for Gray and Color Images whitepaper; 1998 IEEE
International Conference on Computer Vision, Bombay, India

26

Before
Symphony
System
Manager

After Symphony
System Manager

Video processing time 63ms 18-20ms

Performance
improvement

~65%

Power savings 40%

4K video image stabilization for smartphone camera
Dividing workload into fine-grain parallel tasks and using Symphony System
Manager power APIs

With Symphony System Manager

Without Symphony System Manager

• Few lines of code change to use

• Symphony parallel for each pattern

• Symphony dynamic power APIs

• Simple tuning process using Symphony APIs

• Platform: Snapdragon Platform (800)

27

Download Symphony System Manager SDK

- Symphony Library

- User Guide

- Code Samples

https://developer.qualcomm.com/

Qualcomm Developer Network

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2017 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon, Adreno and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other
countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsi diaries
or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm’s licensin g business,
QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly -owned subsidiary of Qualcomm Incorporated,
operates, along with its subsidiaries, substantially all of Qualcomm’s engineering, research and development functions, and s ubstantially all
of its product and services businesses, including its semiconductor business, QCT.

Thank you

