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Physical system

One of the modern quantum systems attracting large interest is the
gas of polaritons – quasiparticles in semiconductor under laser pump-
ing in the optical resonator[1, 2, 3]. The interest to this system is
caused by the possibility to achieve the unusual state of matter – the
so-called Bose-Einstein condensate (BEC) – when large percent of
particles occupy a single quantum state (are “condensed”). Unlike to
more standard physical systems with BEC, such as superfluid helium
and superconductors at cryogenic conditions, polaritonic condensa-
tion can be achieved at essentially higher temperatures, up to room
temperature. This unique fact is explained by artificial nature of po-
laritons, as their effective mass and concentration can be controlled
by the parameters of the experimental setup. As a result, this effect
can form the basis for a new class of optoelectronic devices.
The main issue preventing successful demonstration of BEC in polari-
tons, is the small lifetime of polaritons not enough for the condensate
to form. This sets the question which factors can determine the speed
of condensate formation[4] or, at least reaching the thermal equilib-
rium (thermalization)[5]. To describe the experiment correctly, many
effects should be taken into account, such as details of laser pumping,
interparticle interaction and cooling by the thermal bath.
In this work, we present the effective algorithm to study the process
of thermalization in the model system with two-particle interaction.

Model

Details of physical formulation can be found in [5]. In the system of free quantum particles (e.g. polaritons)
contained in the finite volume a3, the particles occupy the energy levels εk = h̄2

2m
k2, where h̄ is the Planck

constant, m is the particle mass, and momentum k is the 3D vector with components equal to discrete
values with step 2π

a
. Later on, we use units such as εk = k2 and k components are integer. For

numerical study, the system is often discretized so that momentum is limited by some boundary value
−L/2 ≤ kx,y,z < L/2 with L low enough, i.e. 10,20,40,... etc. After that, the results are extrapolated to
bulk limit.
Occupations of each momentum {nk} give the particle distribution. One of the standard approaches to
describe the time evolution of particle distribution, is the system of differential equations for nk(t) – the
so-called kinetic equations. In the case of contact interaction U0 and temperature high enough, they are
written as[5, 6]

dn1

dt
=

2π

h̄
U2

0

∑
234

[(n1 + 1)(n2 + 1 + δ12)n3(n4 − δ34)− (1)

−n1(n2 − δ12)(n3 + 1)(n4 + 1 + δ34)]δε1+ε2,ε3+ε4δ1+2,3+4,

where for simplicity we denote k1,...,k4 as 1,...,4. The last Kronecker symbols δ are responsible for energy
and momentum conservation laws, so actually this sum is only twofold with additional restriction. Later
on we put 2π

h̄
U2

0 = 1.
This multiple sum is the main concern of our work. Amount of calculations for simple summation can be
estimated as L9. Simple CPU realization (Fortran + OpenMP) is practiclly limited by L = 12 (several
seconds each round of calculation).

Result in a nutshell
We use the analytic transformation (below) to get much better scaling L5 logL.
Simulation of systems as large as L = 64 becomes possible. For L = 16, each round of
calculation (step of 4th order Runge-Kutta method) takes as low as 38ms on AMD Fury
X (Fiji GPU). Such performance level allows to study the evolution of the system for
prolonged time of up to 106 and more steps, to study weak effects and slow processes.

Benchmarks

System size is L = 16. Benchmark for several OpenCL devices. Seconds for 100 RK4 steps, the lower the
better:

GPU NVidia GTX AMD Radeon AMD Radeon Intel CPU
Titan Black HD 7970 R9 Fury X i7-4790

Codename (Kepler) (Tahiti) (Fiji) (Haswell)
FP64, seconds 10.1a, 10.4b 6.32 3.75 151.4c

FP32, seconds 7.3a, 7.8b 4.05 2.08 145.4
Specs: FP64, GFlop/s 1881a, 941b 947 537.6 256

Memory bus, bit 384 bit 384 bit 4096 bit 64 bit

Memory bandwidth, GB/s 336 264 512 12.8 GB/s

a for DP/SP ratio 1/3, b for DP/SP ratio 1/6
c GFortran/OpenMP version took about 6 seconds per RK4 step, i.e. 4 times slower

though we could not reach 100% CPU utilization

Analytic transformation

Let us introduce the variables nkε = nkδε,εk in the extended 4D space (k, ε). Then we can write typical
term of Eq. (1) as ∑

k2k3k4ε2ε3ε4

ñk1ε1 ñk2ε2nk3ε3nk4ε4δε4,ε1+ε2−ε3δk4,k1+k2−k3
,

where we set ñkε = nkε + 1.
This multiple sum can be understood as a discrete convolution and therefore easily transformed to single
sum by applying the Fourier transform k, ε→ r, γ and the Convolution theorem[7].
Then after some analytical work, the Equation (1) becomes

dnk,ε

dt
= ñk,ε

(
αk,ε + β2k,2ε − nk+ L

2
,ε

)
− nk,ε

(
α̃k,ε + β̃2k,2ε − ñk+ L

2
,ε

)
, (2)

where

αr,γ = V 2n2
r,γ ñ−r,−γ − V n2r,2γn−r,−γ , βr,γ = V n2

r,γ , (3)

α̃r,γ = V 2ñ2
r,γn−r,−γ + V ñ2r,2γ ñ−r,−γ , β̃r,γ = −V ñ2

r,γ

are the Fourier transforms of the corresponding αk,ε, α̃k,ε, βk,ε, β̃k,ε. Index k + L
2

denotes summation
on all k′ = k + q such that the components of 2q are either zero or equal to ±L. The derivation is not
shown but straightforward.
Volume of the 4D lattice used in the Fourier transform is V = L3Emax ∼ L5, where Emax = 2L2 ≥
2 · 3

(
L
2

)2
taken to be at least twice the maximal energy of single particle, to get rid of extra terms after

convolution. For example, L = 16 gives Emax = 512 best suited for radix-2 FFT.

Sample results

Nonequilibrium distribution of particles (n(k) at first stages of
laser pumping: we see asymmetric distribution generated by
beam

The evolution of particle distribution f(E) shows relaxation to
thermal equilibrium: zero energy becomes the most occupied.
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