The Windsor Build and Testing Framework

Shane Peelar
University of Windsor
401 Sunset Avenue
Windsor, Ontario N9B 3P4
peelar@uwindsor.ca

ABSTRACT

Khronos open source components, including the ICD and Clang
compiler, require significant time and effort to manually download,
build, and install. Source code updates to these components require
recompilation, and developers must repeat error-prone steps to
build new test environments. Ideally developers should be able to
use a tool that automatically obtains, builds, and installs OpenCL
codes, libraries, and tools. The Windsor Build and Testing Frame-
work (WBTF) is a tool that has been developed at the University
of Windsor that does this. This paper will discuss how the WBTF
works, demonstrate how it is used, will show how OpenCL C and
C++ programs can be built, run, and/or used to perform various
header-only, link, and/or various conformance-style tests using
OpenCL reference, host-installed, or using device-installed header
and libraries. Those interested in OpenCL C/C++ development, the
Khronos OpenCL Clang compiler, and in writing conformance tests
will be interested in this framework.

CCS CONCEPTS

+ Software and its engineering — Software configuration man-
agement and version control systems; Software maintenance
tools; Software libraries and repositories;

KEYWORDS

OpenCL C, OpenCL C++, software development, conformance tests

ACM Reference format:
Shane Peelar and Paul Preney. 2017. The Windsor Build and Testing Frame-
work. In Proceedings of May 16-18, 2017,
, Toronto, Canada (IWOCL °17), 2 pages.
DOI: http://dx.doi.org/10.1145/3078155.3078184

1 INTRODUCTION

The Khronos Group [1] is responsible for a number of industry stan-
dards including OpenCL, SPIR-V, and various open source software
tools and libraries for such [13]. Supported software includes the
OpenCL ICD Loader [8], OpenCL C header files [11], OpenCL C++
Standard Library [10], Khronos Reference OpenCL C and OpenCL
C++ compiler [12], and Khronos Reference LLVM Framework with
SPIR-V support [9]. Unfortunately downloading, configuring, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IWOCL 17,

© 2017 Copyright held by the owner/author(s). 978-1-4503-5214-7/17/05...$15.00
DOI http://dx.doi.org/10.1145/3078155.3078184

Paul Preney
University of Windsor
401 Sunset Avenue
Windsor, Ontario N9B 3P4
preney@uwindsor.ca

building these requires a considerable amount of time, effort, and ex-
pertise. The purpose of the Windsor Build and Testing Framework
(WBTEF) is to automate:

e downloading and building of software components in a
platform-independent manner,

e building header-only, host-installed, or device-installed
code using specific versions of Khronos software compo-
nents, and,

e testing/running of such.

We achieve platform independence by using CMake [14]. CMake
is a cross-platform software utility used to build programs taking
into account file modification dates, source code dependencies,
auto-detection of installed tool configurations, etc. Complete with
its own programming language, modern versions of CMake also
support the downloading of code from the Internet and some shell
scripting operations.

The following sections discuss (i) the design of our framework,
(ii) how the download-and-build software tools subsystem operates,
(iii) how the build-and-testing subsystem can be used to build and
test programs, and (iv) additional toolchain support.

2 THE WBTF FRAMEWORK

The WBTF is comprised of two subsystems called the (1) download-
and-build subsystem (DABS) and the (2) build-and-test subsystem
(BATS). The DABS is used to download various software tools and
libraries, CMake, and Ninja [2], etc. followed by building them
using a user-installed C/C++ compiler. If the DABS script is run
more than once, it will update existing downloads and if there have
been any changes, as detected by CMake, then those tools will be
automatically rebuilt if necessary. The result of the DABS is the
installation of various OpenCL-related headers and libraries and a
toolchain capable of compiling OpenCL C and OpenCL C++ code.
The BATS is then able to use the installations from the DABS to
build programs and/or to run conformance-style tests. The DABS
can also be used on its own if a user only wants to use the DABS.

2.1 The Download-And-Build Subsystem
(DABS)

The DABS requires these previously-installed tools:

CMake version 2.8 or higher

Git version 2.10 or higher [4]

Python version 2.7 [7]

a C/C++ compiler capable of compiling Clang (e.g., Clang
[3], GCC [6], Visual Studio C++ (2015 or 2017) [5])

IWOCL ’17, Toronto, Canada,

which are necessary to download and build CMake v3.8, Ninja v1.7.2,
the various aforementioned tools and libraries. This is done by run-
ning a build. sh (for Linux/Unix systems) or build-win.bat (for
Windows) script in the 02-buildsystem directory. These scripts
invoke CMake to: (i) determine the version of CMake installed on
the system (if too old, then it downloads and builds CMake v3.8),
(i) downloads and builds Ninja, and, (iii) downloads and builds all
of the aforementioned software tools and libraries.

The downloads, builds, and installations from this process are
placed, by default, as sibling directories to the top-level WBTF in-
stallation directory. Each sibling directory has the same name as the
top-level directory with an added suffix: (a) ~build: location where
builds occur; (b) -checks: location where conformance-style tests
are placed; (c) -dloads: location of all downloads; (d) -installs:
location where installs are placed; (e) -sdks: for various SDKs,
headers, and other OpenCL libraries.

Running the build script is the only task required unless one
needs to override the default paths and/or add additional reposito-
ries. The latter is done by editing specific CMake files per WBTF
documentation. After the DABS’ installations have completed, the
BATS can then be used.

2.2 The Build-And-Test Subsystem (BATS)

Since OpenCL configurations can vary widely in practice, we use
these definitions for describing BATS configurations: (i) a "build
system" identifies the system that code/tests are being run on; (ii)
a "host system" identifies the system that will execute code/tests,
e.g., "native" and "android"; (iii) a "device" identifies the targeted
OpenCL device attached to the system.

Additionally we use these definitions to describe types of com-
mon OpenCL tests: (i) a "test configuration" is a CMake file that
defines the parameters for the tests being performed; (ii) a "run-time
test" is a host program linked against an OpenCL implementation;
(iil) a "header-only test" or "compile-time test" is a C or C++ source
file that #includes OpenCL headers whose resulting code after com-
pilation is not intended to be executed (i.e., the test itself occurs
during compilation and the test is only successful if compilation was
successful). Compile-time checks are intended to check host/device
code and/or headers for validity. Two types of compile-time tests
are supported: (i) a "host test" is a test that is run using the host
compiler; and (ii) a "device test" is a test that is run using an OpenCL
C or OpenCL C++ offline (device) compiler.

A testing configuration is invoked by running the runtests. sh
script in the @3-conformance-checks directory passing in a CMake
script for a testing configuration, e.g.,

./runtests configs/default.cmake

A configuration script determines which tests are invoked and
the toolchain used by setting some special variables including: (i)
OPENCL_VERSION which identifies the version of OpenCL being
used; (ii) VENDOR which identifies the toolchain being used; and
the (iii) TEST_TYPE which may be "runtime", "compiletime-host", or
"compiletime-device". Just as the DABS placed its results in sibling
directories, so does the BATS. The sibling BATS directory has the
suffix -results and it captures its results in a subdirectory named
as follows:

opencl-<OPENCL_VERSION>-<VENDOR>-<TEST_TYPE>

S. Peelar and P. Preney

The BATS uses the tools and libraries the DABS retrieves. If addi-
tional SDKs are required, they can be added to the -sdks directory
as new vendor implementations. The WBTF provides an example of
this for the Android Mali chipset. Also the BATS is not intended to
replace existing infrastructure: it is to be used as a convenient means
to manage builds and conformance testing across a wide variety of
hardware, OpenCL configurations, and/or infrastructures. Existing
conformance testing systems should be able to plug directly into
this system.

2.3 Additional Toolchain Support

Using Linux or Windows with a compiler toolchain already in-
stalled, the WBTF will work without any configuration. As there
will be times when defaults are insufficient, we’ve tested and doc-
umented how one can add additional toolchain support to build
and test OpenCL code, e.g., Android Mali support. In the BATS,
this is supported via a "vendor" tag. This ability is needed to fully
support both compile-time and run-time tests on the host or device
(e.g., using a host cross-compiler, or, a device compiler via SSH).
This ability has, as of this writing, only been tested for Android
Mali targets with the rest of our BATS development using OpenCL
devices installed on the host x86_64 computer, e.g., a graphics card.

3 CONCLUSIONS

The WBTF DABS makes it easy to use The Khronos Group’s OpenCL
C/C++ compiler toolchain and libraries. This allows interested
hobbyists, researchers, and professionals to develop and explore
OpenCL and SPIR-V in addition to the downloaded sources. Al-
though still a work-in-progress, the BATS permits those who have
at least one OpenCL implementation available to run available
Khronos conformance tests (e.g., OpenCL C++) and to explore how
OpenCL software can be built including the use of the ICD. Future
work will add the ability to add software hooks to that execute
when code is deployed, run, etc. and some additional support for
some of the more common SDKs.

REFERENCES

[1] 2000. The Khronos Group. (2000). https://www.khronos.org
[2] 2012. Ninja: a Small Build System With a Focus On Speed. (2012). https:
//github.com/ninja-build/ninja.git
[3] 2017. clang: A C Language Family Frontend for LLVM. (2017). https://clang.
llvm.org/
[4] 2017. Git. (2017). https://git-scm.com/
[5] Microsoft Corporation. 2017. Visual Studio C++. (2017). https://www.visualstudio.
com/vs/cplusplus/
[6] Free Software Foundation. 2017. GNU Compiler Collection. (2017). https:
//gece.gnu.org/
[7] Python Software Foundation. 2017. Python. (2017). https://www.python.org/
[8] The Khronos Group. 2015. OpenCL ICD Loader Repository. (2015). https:
//github.com/KhronosGroup/OpenCL-ICD-Loader
[9] The Khronos Group. 2016. LLVM Framework with SPIR-V Support. (2016).
https://github.com/KhronosGroup/SPIRV-LLVM.git
[10] The Khronos Group. 2016. OpenCL C++ Standard Library Repository. (2016).
https://github.com/KhronosGroup/libclexx.git
[11] The Khronos Group. 2016. OpenCL Headers Repository. (2016). https://github.
com/KhronosGroup/OpenCL-Headers.git
[12] The Khronos Group. 2016. SPIR Generator/Clang Compiler with OpenCL C and
OpenCL C++ Support. (2016). https://github.com/KhronosGroup/SPIR.git
[13] The Khronos Group. 2017. Public GitHub Repositories. (2017). https://github.
com/KhronosGroup
[14] Kitware Inc. 2000. CMake: The Cross-Platform, Open-Source Build System.
(2000). https://cmake.org/

https://www.khronos.org
https://github.com/ninja-build/ninja.git
https://github.com/ninja-build/ninja.git
https://clang.llvm.org/
https://clang.llvm.org/
https://git-scm.com/
https://www.visualstudio.com/vs/cplusplus/
https://www.visualstudio.com/vs/cplusplus/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.python.org/
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/SPIRV-LLVM.git
https://github.com/KhronosGroup/libclcxx.git
https://github.com/KhronosGroup/OpenCL-Headers.git
https://github.com/KhronosGroup/OpenCL-Headers.git
https://github.com/KhronosGroup/SPIR.git
https://github.com/KhronosGroup
https://github.com/KhronosGroup
https://cmake.org/

	Abstract
	1 Introduction
	2 The WBTF Framework
	2.1 The Download-And-Build Subsystem (DABS)
	2.2 The Build-And-Test Subsystem (BATS)
	2.3 Additional Toolchain Support

	3 Conclusions
	References

