
Applying Models of Computation to

OpenCL Pipes for FPGA Computing

Nachiket Kapre + Hiren Patel
nachiket@uwaterloo.ca



Outline

I Models of Computation and Parallelism
I OpenCL code samples

I Synchronous Dataflow (SDF)

I Bulk Synchronous Parallel (BSP)



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees

I e.g. SDF provides bounds on FIFO sizes + guaranteed
schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees

I e.g. SDF provides bounds on FIFO sizes + guaranteed
schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees

I e.g. SDF provides bounds on FIFO sizes + guaranteed
schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees

I e.g. SDF provides bounds on FIFO sizes + guaranteed
schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees
I e.g. SDF provides bounds on FIFO sizes + guaranteed

schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees
I e.g. SDF provides bounds on FIFO sizes + guaranteed

schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees
I e.g. SDF provides bounds on FIFO sizes + guaranteed

schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes



Models of Computation Taxonomy

CSP

I CSP Communicating Seq Proc

I Threads communicate via
explicit rendezvous

I KPN Kahn Process Networks

I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks

I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks

I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication

I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”

I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

SDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

SDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow
I Deterministic firing rates

I Bounded FIFOs +
Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

SDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow
I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Models of Computation Taxonomy

CSP

KPN

DDF

SDF

I CSP Communicating Seq Proc
I Threads communicate via

explicit rendezvous

I KPN Kahn Process Networks
I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow
I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow
I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu


Quick Intro to OpenCL Pipes

I Pipes provide a disciplined way to share data between
kernels + allow overlapped multi-kernel operation

I Buffering of data between the producer-consumer pair
possible

OpenCL
Kernel 0

OpenCL
Kernel 1OpenCL

Pipe



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures

I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible

I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures
I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible

I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures
I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible

I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures
I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible
I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures
I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible
I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures
I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible
I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs



OpenCL code sketches (CSP)

// aoc --board de5a_net_i2 csp.cl -o csp.aoco -c --report

__kernel void csp_kernel0(__global int* x, __write_only pipe int c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

temp = x[i]*x[i]; // dummy compute

while(done!=0) {

done = write_pipe(c0, &temp);

}

}

__kernel void csp_kernel1(__global int* y, __read_only pipe int c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

done=read_pipe(c0,&temp);

}

y[i]=temp;

}



OpenCL code sketches (KPN)
// aoc --board de5a_net_i2 kpn.cl -o kpn.aoco -c --report

#define INF 16

__kernel void kpn_kernel0(__global int* x,

__write_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

temp = x[i]*x[i]; // dummy compute

done = write_pipe(c0, &temp);

if(done!=0){printf("Unbounded FIFO cannot be full");}

}

__kernel void kpn_kernel1(__global int* y,

__read_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

// cannot read empty pipe

done=read_pipe(c0,&temp);

}

y[i]=temp;

}



OpenCL code sketches (DDF)

// aoc --board de5a_net_i2 ddf.cl -o ddf.aoco -c --report

#define INF 16

int get_pipe_num_packets(__read_only pipe int x) {return 0;}

__kernel void ddf_kernel0(__global int* x,

__write_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

temp = x[i]*x[i]; // dummy compute

done = write_pipe(c0, &temp); // done=0 is guaranteed

}

}

__kernel void ddf_kernel1(__global int* y,

__read_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0 && get_pipe_num_packets(c0)>0) {

done = read_pipe(c0,&temp); // done=0 is guaranteed

}

y[i]=temp;

}



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.



SDF Model for OpenCL Pipes
I Synchronous Dataflow model ideal for streaming

computation

I Constraint: Production and consumption rates must be
known at compile time → not data-dependent

I Outcome: Compiler can analyze exact FIFO size +
schedule order

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

OpenCL
Kernel 0

2wr

2rd

OpenCL
Kernel 1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



SDF Model for OpenCL Pipes
I Synchronous Dataflow model ideal for streaming

computation

I Constraint: Production and consumption rates must be
known at compile time → not data-dependent

I Outcome: Compiler can analyze exact FIFO size +
schedule order

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

OpenCL
Kernel 0

2wr

2rd

OpenCL
Kernel 1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



SDF Model for OpenCL Pipes
I Synchronous Dataflow model ideal for streaming

computation

I Constraint: Production and consumption rates must be
known at compile time → not data-dependent

I Outcome: Compiler can analyze exact FIFO size +
schedule order

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

OpenCL
Kernel 0

2wr

2rd

OpenCL
Kernel 1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



SDF Model for OpenCL Pipes
I Synchronous Dataflow model ideal for streaming

computation

I Constraint: Production and consumption rates must be
known at compile time → not data-dependent

I Outcome: Compiler can analyze exact FIFO size +
schedule order

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

OpenCL
Kernel 0

2wr

2rd

OpenCL
Kernel 1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



__kernel void sdf_kernel0(__read_only pipe int __attribute__((sdf)) c1,

__write_only pipe int __attribute__((sdf)) c0)

{

int i=get_local_id(0);

int temp1=0, temp2=0, result1=0, result2=0;

// no need to check FIFO full/empty

read_pipe(c1, &temp1);

read_pipe(c1, &temp2);

result1 = temp1*temp2; // dummy compute

result2 = temp2/temp1; // dummy compute

write_pipe(c0, &result1);

write_pipe(c0, &result2);

}

__kernel void sdf_kernel1(__write_only pipe int __attribute__((sdf)) c1,

__read_only pipe int __attribute__((sdf)) c0)

{

int i=get_local_id(0);

int temp=0, result=0;

// no need to check FIFO full/empty

read_pipe(c0,&temp);

result=temp/10; // dummy compute

write_pipe(c1,&result);

}



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff

I Schedule dictates how many times and in what order,
the OpenCL kernels will evaluate

I Implied II (Initiation Interval) constraint on each
connected OpenCL kernel

I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA

I Multiple reads or writes to a Pipe should affect Initiation
Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate

I Implied II (Initiation Interval) constraint on each
connected OpenCL kernel

I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA

I Multiple reads or writes to a Pipe should affect Initiation
Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate
I Implied II (Initiation Interval) constraint on each

connected OpenCL kernel

I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA
I Multiple reads or writes to a Pipe should affect Initiation

Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate
I Implied II (Initiation Interval) constraint on each

connected OpenCL kernel
I If cannot be met, scale the schedule

I If met easily, get greedy and try to use more of the
FPGA

I Multiple reads or writes to a Pipe should affect Initiation
Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate
I Implied II (Initiation Interval) constraint on each

connected OpenCL kernel
I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA

I Multiple reads or writes to a Pipe should affect Initiation
Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate
I Implied II (Initiation Interval) constraint on each

connected OpenCL kernel
I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA
I Multiple reads or writes to a Pipe should affect Initiation

Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff
I Schedule dictates how many times and in what order,

the OpenCL kernels will evaluate
I Implied II (Initiation Interval) constraint on each

connected OpenCL kernel
I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA
I Multiple reads or writes to a Pipe should affect Initiation

Interval of circuit
I Consider FIFO port bandwidth constraint during HLS

scheduling



Example FPGA Mapping Options

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

I e.g. Kernel 0 II: x , Kernel 1 II: x
2
→ can save area by

using higher II constraint on kernel 0

OpenCL
Kernel 0

II=2

2wr

2rd

OpenCL
Kernel 1

II=1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



Example FPGA Mapping Options

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

I e.g. Kernel 0 II: x , Kernel 1 II: x
2
→ can save area by

using higher II constraint on kernel 0

OpenCL
Kernel 0

II=4

2wr

2rd

OpenCL
Kernel 1

II=2

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1



Final Outcomes of SDF + OpenCL Pipes

I SDF disallows work-item variant code → no
data-dependent conditional access to pipe from different
work-items

I SDF allows multiple reads/write from same work-item

I Compiler determines depth attribute on pipes + area
allocated to each kernel (subject to II minimization)



Final Outcomes of SDF + OpenCL Pipes

I SDF disallows work-item variant code → no
data-dependent conditional access to pipe from different
work-items

I SDF allows multiple reads/write from same work-item

I Compiler determines depth attribute on pipes + area
allocated to each kernel (subject to II minimization)



Final Outcomes of SDF + OpenCL Pipes

I SDF disallows work-item variant code → no
data-dependent conditional access to pipe from different
work-items

I SDF allows multiple reads/write from same work-item

I Compiler determines depth attribute on pipes + area
allocated to each kernel (subject to II minimization)



BSP Model for OpenCL Pipes
I Bulk Synchronous Parallel model ideal for irregular

computation

I Constraint: Message src-dest pairs must be supplied to
the pipe for routing

I Outcome: Compiler inserts a NoC or a multi-ported RAM
to enable exchange

Kernel 0

Kernel 1



BSP Model for OpenCL Pipes
I Bulk Synchronous Parallel model ideal for irregular

computation
I Constraint: Message src-dest pairs must be supplied to

the pipe for routing

I Outcome: Compiler inserts a NoC or a multi-ported RAM
to enable exchange

Kernel 0

Kernel 1



BSP Model for OpenCL Pipes
I Bulk Synchronous Parallel model ideal for irregular

computation
I Constraint: Message src-dest pairs must be supplied to

the pipe for routing
I Outcome: Compiler inserts a NoC or a multi-ported RAM

to enable exchange

Kernel 0

Kernel 1



__kernel void bsp_kernel0(__global int* x,

__global int* dest,

__write_only pipe int __attribute__((bsp)) c)

{

int i=get_local_id(0);

write_bsp_pipe(c, x[i], dest[i]);

barrier(CLK_BSP_MEM_FENCE);

}

__kernel void bsp_kernel1(__global int* y,

__read_only pipe int __attribute__((bsp)) c)

{

int i=get_local_id(0);

barrier(CLK_BSP_MEM_FENCE);

int temp=0;

read_bsp_pipe(c,&temp);

y[i]=temp;

}



Message Routing between threads

Kernel 0

Kernel 1

Routing Network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages
I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages
I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip

I Also need a new synchronization barrier to ensure that
the pipe/NoC has routed all messages

I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages

I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages
I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages
I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network



Final Outcomes of BSP + OpenCL Pipes

I BSP allows work-items to talk to each other in arbitrary
manner. We must tag each pipe operation with extra
metadata 〈 src,dest 〉

I BSP requires a new form of synchronization → probably
analogous to commit pipe

I BSP message-passing can be implemented using an
FPGA NoC



Final Outcomes of BSP + OpenCL Pipes

I BSP allows work-items to talk to each other in arbitrary
manner. We must tag each pipe operation with extra
metadata 〈 src,dest 〉

I BSP requires a new form of synchronization → probably
analogous to commit pipe

I BSP message-passing can be implemented using an
FPGA NoC



Final Outcomes of BSP + OpenCL Pipes

I BSP allows work-items to talk to each other in arbitrary
manner. We must tag each pipe operation with extra
metadata 〈 src,dest 〉

I BSP requires a new form of synchronization → probably
analogous to commit pipe

I BSP message-passing can be implemented using an
FPGA NoC



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes

I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item
I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?

I Violate OpenCL spec? → multiple writes/reads per
workitem, work-item can talk to any work-item

I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item

I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item
I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item
I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item
I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX



Wrapup: Vision for Pipes on FPGAs

I Add compute model semantics to pipes
I Vendor-specific extension?
I Violate OpenCL spec? → multiple writes/reads per

workitem, work-item can talk to any work-item
I Clarify spec? → ordering of events on pipes?

I Feedback and Fanout in Pipes

I Support Pipes with FPGA NoCs → packet-switched
communication

I TODO: Someone please make an OpenCL lexer for
Pygments + LaTeX


