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Models of Computation (MoC)

I A MoC is a way to think + organize + analyze your
computational problem

I (1) Provide semantics of concurrent execution of
computational components (actors), and

I (2) Define possible communication interactions between
the compute components

I Consciously sacrifice expressive freedom for guarantees

I e.g. SDF provides bounds on FIFO sizes + guaranteed
schedule

I Inspiration → Edward Lee’s Ptolemy project at Berkeley,
Axel Jantsch’s models work

I In this proposal, OpenCL compute model + MoC
Communication Schemes
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Models of Computation Taxonomy

CSP

I CSP Communicating Seq Proc

I Threads communicate via
explicit rendezvous

I KPN Kahn Process Networks

I Allows relaxed communication
I Requires unbounded FIFOs

I DDF Dynamic Dataflow

I Indivisible “rd+fire+wr”
I Reduces context-switching

I SDF Synchronous Dataflow

I Deterministic firing rates
I Bounded FIFOs +

Guaranteed schedule

I http://ptolemy.eecs.berkeley.edu
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Quick Intro to OpenCL Pipes

I Pipes provide a disciplined way to share data between
kernels + allow overlapped multi-kernel operation

I Buffering of data between the producer-consumer pair
possible

OpenCL
Kernel 0

OpenCL
Kernel 1OpenCL

Pipe



Pipes on FPGAs a match made in heaven

I FPGAs have abundant on-chip wiring structures

I 80–90% of FPGA silicon is devoted to wiring

I Unlike other architectures, point-to-point comms possible

I No DMA controllers, Cache coherency

I Pipes are a natural way to exploit FPGA wiring

I On-chip BRAMs can be configured as FIFOs
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OpenCL code sketches (CSP)

// aoc --board de5a_net_i2 csp.cl -o csp.aoco -c --report

__kernel void csp_kernel0(__global int* x, __write_only pipe int c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

temp = x[i]*x[i]; // dummy compute

while(done!=0) {

done = write_pipe(c0, &temp);

}

}

__kernel void csp_kernel1(__global int* y, __read_only pipe int c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

done=read_pipe(c0,&temp);

}

y[i]=temp;

}



OpenCL code sketches (KPN)
// aoc --board de5a_net_i2 kpn.cl -o kpn.aoco -c --report

#define INF 16

__kernel void kpn_kernel0(__global int* x,

__write_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

temp = x[i]*x[i]; // dummy compute

done = write_pipe(c0, &temp);

if(done!=0){printf("Unbounded FIFO cannot be full");}

}

__kernel void kpn_kernel1(__global int* y,

__read_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

// cannot read empty pipe

done=read_pipe(c0,&temp);

}

y[i]=temp;

}



OpenCL code sketches (DDF)

// aoc --board de5a_net_i2 ddf.cl -o ddf.aoco -c --report

#define INF 16

int get_pipe_num_packets(__read_only pipe int x) {return 0;}

__kernel void ddf_kernel0(__global int* x,

__write_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0) {

temp = x[i]*x[i]; // dummy compute

done = write_pipe(c0, &temp); // done=0 is guaranteed

}

}

__kernel void ddf_kernel1(__global int* y,

__read_only pipe int __attribute__((depth(INF))) c0)

{

int i=get_local_id(0);

int done=-1, temp=0;

while(done!=0 && get_pipe_num_packets(c0)>0) {

done = read_pipe(c0,&temp); // done=0 is guaranteed

}

y[i]=temp;

}



Limitations of OpenCL Pipes

I Xilinx and Intel/Altera support the OpenCL pipes spec in
different ways

I e.g. get pipe num packets()

I Liberal use of vendor-specific extensions (portable?)

I Not necessarily using the right approach for
FPGA-friendly communication

I Feedback loops or cycles not supported? Initial value
problem.
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SDF Model for OpenCL Pipes
I Synchronous Dataflow model ideal for streaming

computation

I Constraint: Production and consumption rates must be
known at compile time → not data-dependent

I Outcome: Compiler can analyze exact FIFO size +
schedule order

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

OpenCL
Kernel 0

2wr

2rd

OpenCL
Kernel 1

1rd

1wr

OpenCL
Pipe c0

OpenCL
Pipe c1
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__kernel void sdf_kernel0(__read_only pipe int __attribute__((sdf)) c1,

__write_only pipe int __attribute__((sdf)) c0)

{

int i=get_local_id(0);

int temp1=0, temp2=0, result1=0, result2=0;

// no need to check FIFO full/empty

read_pipe(c1, &temp1);

read_pipe(c1, &temp2);

result1 = temp1*temp2; // dummy compute

result2 = temp2/temp1; // dummy compute

write_pipe(c0, &result1);

write_pipe(c0, &result2);

}

__kernel void sdf_kernel1(__write_only pipe int __attribute__((sdf)) c1,

__read_only pipe int __attribute__((sdf)) c0)

{

int i=get_local_id(0);

int temp=0, result=0;

// no need to check FIFO full/empty

read_pipe(c0,&temp);

result=temp/10; // dummy compute

write_pipe(c1,&result);

}



Implication of SDF in OpenCL→FPGA mapping

I For FPGA mapping, schedule is an area-time tradeoff

I Schedule dictates how many times and in what order,
the OpenCL kernels will evaluate

I Implied II (Initiation Interval) constraint on each
connected OpenCL kernel

I If cannot be met, scale the schedule
I If met easily, get greedy and try to use more of the

FPGA

I Multiple reads or writes to a Pipe should affect Initiation
Interval of circuit

I Consider FIFO port bandwidth constraint during HLS
scheduling
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Example FPGA Mapping Options

I e.g. Firing sequence: Kernel 0, Kernel 1, Kernel 1

I e.g. Kernel 0 II: x , Kernel 1 II: x
2
→ can save area by

using higher II constraint on kernel 0

OpenCL
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II=2

2wr

2rd

OpenCL
Kernel 1

II=1

1rd
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OpenCL
Pipe c0

OpenCL
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Final Outcomes of SDF + OpenCL Pipes

I SDF disallows work-item variant code → no
data-dependent conditional access to pipe from different
work-items

I SDF allows multiple reads/write from same work-item

I Compiler determines depth attribute on pipes + area
allocated to each kernel (subject to II minimization)
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BSP Model for OpenCL Pipes
I Bulk Synchronous Parallel model ideal for irregular

computation

I Constraint: Message src-dest pairs must be supplied to
the pipe for routing

I Outcome: Compiler inserts a NoC or a multi-ported RAM
to enable exchange

Kernel 0

Kernel 1
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__kernel void bsp_kernel0(__global int* x,

__global int* dest,

__write_only pipe int __attribute__((bsp)) c)

{

int i=get_local_id(0);

write_bsp_pipe(c, x[i], dest[i]);

barrier(CLK_BSP_MEM_FENCE);

}

__kernel void bsp_kernel1(__global int* y,

__read_only pipe int __attribute__((bsp)) c)

{

int i=get_local_id(0);

barrier(CLK_BSP_MEM_FENCE);

int temp=0;

read_bsp_pipe(c,&temp);

y[i]=temp;

}



Message Routing between threads

Kernel 0

Kernel 1

Routing Network



Implication of BSP in OpenCL→FPGA mapping

I For FPGA mapping, the threads in a kernel must be
parallelized for simultaneous dispatch of messages

I Parallelism within kernel achieved through replication of
compute units and/or unrolling of threads

I Transport of pipe messages need a network-on-chip
I Also need a new synchronization barrier to ensure that

the pipe/NoC has routed all messages
I Potential implications on storage costs at destination

I Depending on bottleneck, optimize either logic or the
network
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