
 Analyzing and improving
performance portability of OpenCL

applications via auto-tuning
James Price & Simon McIntosh-Smith

University of Bristol - High Performance Computing Group
http://uob-hpc.github.io

Funded in part by Imagination Technologies

http://uob-hpc.github.io

Overview
• Performance portability is one of the key concerns

for developers targeting many different architectures

• Current work in this area has provided mixed results

• Here we propose a method of rigorously analyzing
performance portability by exploiting the black-box
nature of auto-tuning

• We also present a simple technique that can improve
performance portability when using auto-tuning

Analysis approach
• Expose set of possible implementation decisions as

tuning options

• Dynamically generate kernels to provide greater flexibility

• Run auto-tuner to optimize the kernel for each device
individually

• This produces a set of architecture-specific kernels

• We then run each architecture-specific kernel on every
other device and measure efficiency

Benchmark #1: Jacobi method
• Work-group size / parallel decomposition

• Memory layout / memory access pattern

• Loop unrolling

• *+ vs mad vs fma

• Branching vs masks

• Division by diagonal (inline or precompute)

• Address spaces of input vectors

• Embedding values into kernel as constants

Solve Ax = b

Split matrix A into diagonal D
and remainder R

xi+1 = D-1(b - Rxi)

Benchmark #2: Bilateral filter
• Work-group size

• Tile size / tile layout

• Prefetch pixels into private/local memory

• Buffers vs images

• *+ vs mad vs fma

• Loop interchange

• Native math functions

• Embedding values into kernel as constants

O(x, y) =

rX

i=�r

rX

j=�r

I(i, j) ·W (x, y, i, j)

rX

i=�r

rX

j=�r

W (x, y, i, j)

W (x, y, i, j) = e

(�
p

i

2+j

2

2�
d

� ||(I(x,y)�I(x+i,y+j)||
2�

r

)

Benchmark #3: BUDE

• Parallel decomposition / work-group size

• Data layout / memory access patterns

• Loop interchange

• Address space of molecules / forcefield

• Precomputing forcefield coefficients

• Native math functions

• Embedding values into kernel as constants

Devices
Vendor Product Architecture Compute units

NVIDIA

GeForce GTX 580 Fermi (GF110) 16
GeForce GTX 680 Kepler (GK104) 8

GeForce GTX 780 Ti Kepler (GK110) 15
GeForce GTX 980 Ti Maxwell (GM200) 22
GeForce GTX 1080 Ti Pascal (GP102) 28

AMD

Radeon HD 7970 Tahiti 32
Radeon R9 290X Hawaii 44
Radeon R9 Furyx Fiji 64
Radeon RX 480 Ellesmere 36

Intel
Core i5-3550 Ivy Bridge 4
Core i5-4590 Haswell 4
Core i5-6600 Skylake 4

Jacobi efficiencies

G
TX

58
0

G
TX

68
0

G
TX

78
0

Ti
G

TX
98

0
Ti

G
TX

10
80

Ti
H

D
79

70

R9
29

0X

R9
Fu

ry
X

RX
48

0
Iv

y
Br

id
ge

CP
U

H
as

w
el

l C
PU

Sk
yl

ak
e

CP
U

running on

GTX 580

GTX 680

GTX 780 Ti

GTX 980 Ti

GTX 1080 Ti

HD 7970

R9 290X

R9 Fury X

RX 480

Ivy Bridge CPU

Haswell CPU

Skylake CPU

tu
ne

d
fo

r

100%

92%

93%

71%

91%

23%

91%

24%

87%

21%

12%

90%

87%

100%

66%

69%

97%

19%

79%

20%

74%

14%

16%

69%

74%

71%

100%

51%

58%

20%

84%

20%

78%

18%

16%

93%

53%

98%

95%

100%

98%

21%

97%

23%

95%

41%

39%

90%

56%

98%

90%

92%

100%

33%

97%

37%

93%

40%

43%

90%

X

55%

68%

53%

68%

100%

99%

100%

99%

19%

37%

45%

X

38%

33%

33%

38%

100%

100%

99%

99%

14%

20%

28%

X

26%

32%

49%

28%

99%

93%

100%

97%

6%

11%

14%

X

57%

62%

36%

62%

100%

100%

99%

100%

13%

17%

21%

1%

1%

5%

5%

1%

73%

2%

62%

2%

100%

2%

2%

5%

5%

5%

5%

5%

85%

70%

80%

93%

53%

100%

99%

4%

4%

4%

5%

4%

71%

57%

65%

81%

44%

97%

100%

Jacobi - NVIDIA
G

TX
58

0

G
TX

68
0

G
TX

78
0

Ti

G
TX

98
0

Ti

G
TX

10
80

Ti

running on

GTX 580

GTX 680

GTX 780 Ti

GTX 980 Ti

GTX 1080 Ti

tu
ne

d
fo

r

100%

92%

93%

71%

91%

87%

100%

66%

69%

97%

74%

71%

100%

51%

58%

53%

98%

95%

100%

98%

56%

98%

90%

92%

100%
• Work-group size

differs between
devices

• Other drops due to
address spaces and
memory access
pattern

Jacobi - AMD
H

D
79

70

R9
29

0X

R9
Fu

ry
X

RX
48

0

running on

HD 7970

R9 290X

R9 Fury X

RX 480

tu
ne

d
fo

r

100%

99%

100%

99%

100%

100%

99%

99%

99%

93%

100%

97%

100%

100%

99%

100%
• Most parameters

uniform between all
AMD devices

• FuryX suffers a little
with expensive
division

Jacobi - Intel
Iv

y
Br

id
ge

CP
U

H
as

w
el

l C
PU

Sk
yl

ak
e

CP
U

running on

Ivy Bridge CPU

Haswell CPU

Skylake CPU

tu
ne

d
fo

r

100%

2%

2%

53%

100%

99%

44%

97%

100% • Ivy Bridge
performs poorly
with fma builtin

• Vectorisation
width differs

Jacobi efficiencies

G
TX

58
0

G
TX

68
0

G
TX

78
0

Ti
G

TX
98

0
Ti

G
TX

10
80

Ti
H

D
79

70

R9
29

0X

R9
Fu

ry
X

RX
48

0
Iv

y
Br

id
ge

CP
U

H
as

w
el

l C
PU

Sk
yl

ak
e

CP
U

running on

GTX 580

GTX 680

GTX 780 Ti

GTX 980 Ti

GTX 1080 Ti

HD 7970

R9 290X

R9 Fury X

RX 480

Ivy Bridge CPU

Haswell CPU

Skylake CPU

tu
ne

d
fo

r

100%

92%

93%

71%

91%

23%

91%

24%

87%

21%

12%

90%

87%

100%

66%

69%

97%

19%

79%

20%

74%

14%

16%

69%

74%

71%

100%

51%

58%

20%

84%

20%

78%

18%

16%

93%

53%

98%

95%

100%

98%

21%

97%

23%

95%

41%

39%

90%

56%

98%

90%

92%

100%

33%

97%

37%

93%

40%

43%

90%

X

55%

68%

53%

68%

100%

99%

100%

99%

19%

37%

45%

X

38%

33%

33%

38%

100%

100%

99%

99%

14%

20%

28%

X

26%

32%

49%

28%

99%

93%

100%

97%

6%

11%

14%

X

57%

62%

36%

62%

100%

100%

99%

100%

13%

17%

21%

1%

1%

5%

5%

1%

73%

2%

62%

2%

100%

2%

2%

5%

5%

5%

5%

5%

85%

70%

80%

93%

53%

100%

99%

4%

4%

4%

5%

4%

71%

57%

65%

81%

44%

97%

100%

WCE
2%
2%
6%
2%

20%
2%

19%
1%
5%
4%
1%
-

Bilateral efficiencies
WCE
8%
8%
5%

26%
26%
25%

-
14%
37%
37%
14%

G
TX

58
0

G
TX

68
0

G
TX

78
0

Ti

G
TX

98
0

Ti
G

TX
10

80
Ti

R9
29

0X

R9
Fu

ry
X

RX
48

0

Iv
y

Br
id

ge
CP

U
H

as
w

el
l C

PU
Sk

yl
ak

e
CP

U

running on

GTX 580

GTX 680

GTX 780 Ti

GTX 980 Ti

GTX 1080 Ti

R9 290X

R9 Fury X

RX 480

Ivy Bridge CPU

Haswell CPU

Skylake CPU

tu
ne

d
fo

r

100%

96%

95%

100%

93%

70%

70%

70%

8%

19%

19%

98%

100%

96%

97%

90%

68%

71%

70%

6%

13%

13%

99%

99%

100%

99%

97%

73%

76%

69%

7%

18%

18%

100%

98%

98%

100%

97%

85%

85%

84%

7%

17%

17%

99%

97%

98%

98%

100%

86%

87%

87%

7%

12%

12%

35%

37%

37%

35%

X

100%

100%

100%

6%

11%

11%

31%

38%

37%

31%

X

100%

100%

100%

5%

8%

8%

29%

45%

45%

37%

X

100%

100%

100%

5%

9%

9%

14%

74%

74%

14%

14%

28%

28%

29%

100%

98%

98%

73%

72%

71%

72%

72%

27%

27%

27%

99%

100%

100%

74%

74%

73%

71%

73%

25%

26%

26%

99%

100%

100%

BUDE efficiencies
WCE
39%
37%
8%

30%
13%
46%
12%
35%

-
-
-
-

G
TX

58
0

G
TX

68
0

G
TX

78
0

Ti
G

TX
98

0
Ti

G
TX

10
80

Ti
H

D
79

70

R9
29

0X

R9
Fu

ry
X

RX
48

0
Iv

y
Br

id
ge

CP
U

H
as

w
el

l C
PU

Sk
yl

ak
e

CP
U

running on

GTX 580

GTX 680

GTX 780 Ti

GTX 980 Ti

GTX 1080 Ti

HD 7970

R9 290X

R9 Fury X

RX 480

Ivy Bridge CPU

Haswell CPU

Skylake CPU

tu
ne

d
fo

r

100%

100%

X

91%

91%

90%

84%

91%

68%

15%

81%

74%

98%

100%

81%

66%

48%

78%

50%

52%

30%

8%

81%

64%

X

X

100%

83%

35%

33%

46%

32%

32%

13%

37%

39%

X

X

89%

100%

77%

66%

89%

79%

90%

21%

90%

85%

X

X

83%

100%

100%

74%

97%

86%

96%

29%

93%

87%

X

X

X

X

71%

100%

75%

72%

72%

10%

78%

84%

X

X

X

X

61%

73%

100%

66%

67%

10%

64%

61%

X

X

X

X

71%

86%

86%

100%

50%

12%

48%

47%

X

X

X

X

75%

95%

98%

100%

100%

12%

92%

92%

57%

57%

X

X

62%

15%

93%

16%

63%

100%

98%

98%

51%

51%

X

X

61%

15%

93%

14%

61%

98%

100%

98%

43%

43%

X

X

57%

12%

93%

13%

57%

99%

98%

100%

Multi-objective auto-tuning
• Extend tuning process to consider multiple devices

at once

• Each time a kernel is generated, the auto-tuner
evaluates it on every target device

• The performance values are then reduced into a
single number representing the overall ‘fitness’

• We use worst-case efficiency for this fitness
function

Multi-objective tuning results

Summary
• Over-optimisation hurts performance portability

• Auto-tuning can be a great way to expose these
issues

• It can also help generate performance portable
kernels

• Future work looking at tuning across different input/
problem configurations

