RTX-RSIim

Accelerated Vulkan Room Response
Simulation for Time-of-Flight Imaging

Peter Thoman, Markus Wippler,
Robert Hranitzky, and Thomas Fahringer

peterthoman@uibk.ac.at

N2 N
tofmotion B universitat

depth sens::gmi nnnnnnnnn I n n S b r u c k ; D P S

///// ‘ \\\\\ Dist\;i'buted and Parallel Systems

IWOCL
2020

,, Background and Motivation

=l

IWOCL 2020 — RTX-RSim 2

The Basic Idea

® |n room response simulation for time of flight imaging, we are interested in
computing the propagation of light

e from a light source (L)

e through a room
(defined by some
geometry and
surface properties G)

® to asensor array (S)

In the real world, L and S are part of a
Time-of-flight (ToF) camera assembly.

IWOCL 2020 — RTX-RSim 3

The Goal

e Unlike in e.g. image rendering or lighting
computations, the goal of the simulation is to compute
a radiosity time series for each geometric primitive

e Based on this time series, which simulates the actual
photons received by a ToF camera sensor, scene depth

cah be reconstructed

e With RSim, since the exact depth is known, different
scenes and reconstruction schemes can be easily
evaluated

—> Use during development of better ToF hardware
implementations or software algorithms

IWOCL 2020 — RTX-RSim

Algorithm Overview

Read input data, including geometric primitives (G),
their surface material information (p), and initial impulse

Pre-computation of the per-triangle area (4;)

Mutual signal delay computation, storing the
signal delay for each triangle pair (g;,g;) in T;;

Mutual visibility computation, evaluating the energy transfer
between each triangle pair stochastically and storing in K;; g"p V

For each timestep t € [0,T):

* Propagate radiosity, computing rad, ; for each triangle g; in all pairs (g;,9;)
based on K;; and rad;_; ;

Compute the distance from the light/sensor position to each triangle g;, based on
rad[O,T)’i

IWOCL 2020 — RTX-RSim

Algorithm Performance and
Data Requirement Analysis

IWOCL 2020 — RTX-RSim 6

Algorithm Steps

1. Input data prep.
2. Pre-compute 4;

3. Pre-compute 7;;

4. Mutual visibility
comp. 2> Kj;

Analyse time complexity for each step of the
algorithm.

5. Radiosity
propagation
- Tad[O,T),i

6. Compute distance

IWOCL 2020 — RTX-RSim

Algorithm Steps

1. Input data prep.
2. Pre-compute 4;

3. Pre-compute T;;
J Steps 1 and 2 iterate over N triangles, with simple

4. Mutual visibility /O operations and area computation for each
comp. 2> Kj; element.

5. Radiosity Readily identified as O(N) complexity.
propagation
- Tad[O,T),i

6. Compute distance

IWOCL 2020 — RTX-RSim

Algorithm Steps

1. Input data prep.

2. Pre-compute 4;

3. Pre-compute 7;; Computing propagation delay for each pair of

: 2
4. Mutual visibility triangles > O(N)

comp. > K;; However, the fixed factor is low, and compared to
5 2 5 o
= Frifiosii the r.e.mammg phases, even N“ complexity is largely
: negligible.
propagation
- Tad[O,T),i

6. Compute distance

IWOCL 2020 — RTX-RSim

1. Input data prep.
2. Pre-compute 4;

3. Pre-compute 7;;

4. Mutual visibility
comp. 2> Kj;

5. Radiosity
propagation
- Tad[O,T),i

6. Compute distance

Algorithm Steps

Stochastically evaluate the visibility between every
pair of triangles — in naive implementation requires a
ray-triangle intersection check against all other

triangles in the scene. With § stochastic samples:
> O0(N3 «5).

In practice, use geometric acceleration structure.
Current RSim on CPU uses octrees, resulting in a
reduction of average-case query complexity from

O(N) to O(log(N)).
> O(N? xlog(N) * S)

IWOCL 2020 — RTX-RSim 10

Algorithm Steps

1. Input data prep.

Uses signal delay 7;; and mutual visibility
information K;;, as well as the previous radiosity up
to the currently computed timestep rado) ;-

4. Mutual visibility For each timestep t and each pair (g;,9;):
comp. 2> Kj;

2. Pre-compute 4;

3. Pre-compute 7;;

Propagate energy between triangles in the pair from

5. Radiosity time t — 7; ;j according to mutual visibility as well as
propagation their surface properties.
- rad[O,T),i 9 O(NZ B T)

6. Compute distance

IWOCL 2020 — RTX-RSim 11

1. Input data prep.
2. Pre-compute 4;
3. Pre-compute 7;;

4. Mutual visibility
comp. 2> Kj;

5. Radiosity
propagation
- Tad[O,T),i

6. Compute distance

Algorithm Steps

Distance computation usually based on cross-
correlation of radiosity time series.

> O(N = T?)

T is usually much smaller than N, and fixed factor is
very small as well. Usually negligible overall, similar
to step 3.

IWOCL 2020 — RTX-RSim

12

Measured Performance

—o—Mutual Visibility /‘

e Scaling trend matches
observations on
algorithmic complexity

——Qther o Latie
/ / ¢ Clearly mutual visibility

computation and
radiosity simulation are

// main priority

Small Medium Large

-==Radiosity Simulation

[N
00] o
o o

Relative Performance (Small = 1)
I o)
o o

k
|

IWOCL 2020 — RTX-RSim 13

Vulkan Raytracing and Compute
(\ for Room Response Simulation
\
Vulkan.

IWOCL 2020 — RTX-RSim 14

Data Management

e A Vulkan implementation needs to be massively data-parallel to be efficient
e And we are constrained in the amount of data we can store on a GPU

— Data-centric view of the algorithm

IWOCL 2020 — RTX-RSim

15

Data Management

Triangles (G) Indexed vertex buffer
Material information (p) 3 * FP32
Raytracing Buffers Internal / opaque
Sample Coordinates 2 * FP32
Mutual Visibility (Kj;) FP16
Radiosity (rad) 4 * FP32
Distance FP32

e Generally, S K T « N, therefore Ki; dominates.

o Signal delay 7;; recomputed instead of stored.

IWOCL 2020 — RTX-RSim

- FP16 sufficient!

16

Hardware Raytracing for Mutual Visibility

Input Geometry

\/—

Build |

Top-level AS

Qescriptor Set

r

(ol Ufﬂ

\[buff | [buff | ...

f Bottom-level AS

Shader Binding Table

Hit

- Raygen |

Acceleration |

Structure <= Ray Generationw

Traversal | >

e Schematic representation of HW raytracing process

IWOCL 2020 — RTX-RSim

... Dataset

... Operation

' ... Fixed function

GPU operation

... GPU data structures
... RT shader

... RT shader invocation

17

Hardware Raytracing for Mutual Visibility

Input Geometry _Top-level AS Descriptor Set .
] Build i [] [] [] ... Dataset
: ()] | @D -]| L
g | / |

: —— % Shader Binding Tabl. - .

E Bottom-level AS aRae;gelz |r\:g ;a eHit 3 i 1 ...Operation
: W “| 1 .. Fixed function

GPU operation

... GPU data structures
Raytracing: {1 RTshader

E ClOSESt H|t [— yes mmm—m—mmmmo oy ! L
K . — ' Acceleration | : . _
lj : | Structure <—f Ray Generationw : D .. RT shader invocation
i Miss] o Traversal 1N i
| <+ N0 1 |

R —

® Geometry is static 2 we can optimize AS build for traversal speed rather
than build/update performance

IWOCL 2020 — RTX-RSim 18

Hardware Raytracing for Mutual Visibility

Input Geometry _Top-level AS Descriptor Set .
: Build | [] [] [] ... Dataset
: NIInID) -
g | / |

: —— % Shader Binding Tabl. - .

E Bottom-level AS aRae;gel:: |r\:g ;a eHit 3 Lo . Operation
: W “| 1 .. Fixed function

GPU operation

... GPU data structures
RT shader

Acceleration | ! ‘ o . _
o Traversal 1N i

e Descriptor Set: our RT shaders require read-only access to G, p, and the
Sample Coordinates buffer, as well as write access to K;;

e Shaders: only require ray generation and a single hit and miss shader

IWOCL 2020 — RTX-RSim 19

Hardware Raytracing for Mutual Visibility

Build |

Input Geometry

< yes i ST
' Acceleration |
 Structure
' Traversal |

<+t N0 — NV e 1

i Closest Hit
Kij [
e E Miss

Raytracing

l«

Ray Generation}

» Ray generation: generate S rays for every pair of triangles
(order independent, thus N*/2 — N required size, 1D grid)

© Aggregate results and write to Kj;

IWOCL 2020 — RTX-RSim

p Top-level AS Qescriptor Set .
[[]] [[]][[]ﬂ \[buff][buff] L.
g | / |
—Y ¥ v Shader Binding Table T
Bottom-level AS Vo : I
. Raygen | ! Hit -

—————————

... Operation

' ... Fixed function

GPU operation

... GPU data structures
... RT shader

... RT shader invocation

20

Hardware Raytracing for Mutual Visibility

Input Geometry _Top-level AS Descriptor Set .
: Build i [] [] [] ... Dataset
: () ()| (oo - || L
g | / 1

: —Y r v Shader Binding Table A .

E Bottom-level AS Raygeln I\ig ST S - Operation
: - - B ... Fixed function

GPU operation

... GPU data structures
] Raytracing i {1 RT shader

E ClOSESt H|t < yes mm—m——m-m--- e ! L
K . — | ' Acceleration | : . _
lj : | Structure <—f Ray Generationw : D .. RT shader invocation
i Miss) o Traversal 1N i
| < N0 1 |

R o S

e Miss shader: trivial, simply set visible=false for use in raygen shader

¢ Closest hit: check if expected triangle hit

IWOCL 2020 — RTX-RSim 21

Compute Shader Radiosity Simulation

e Second compute-intensive phase, based on
mutual visibility result from HW raytracing

® |Implemented using Vulkan compute shaders
® One shader invocation per time step

* Important: parallelized in 1D over N, not 2D over N*
- slightly lower potential at small sizes, but less synchronization

IWOCL 2020 — RTX-RSim

22

for(uint dstTrildx = dstTriStart;

SlmpllfIEd RadIOSIty dstTrildx < dstTriEnd; ++dstTrildx) {
if(srcTrildx == dstTriIdx) continue;
Compute Shader

const mat3 dstTri = getTriangle(dstTrilIdx);
const int tauij = calcTauij(srcTri, dstTri);

// Skip if wave hasn't yet propagated between <
triangle 1 and triangle dstTrilIdx.

if(timestep < tauij) continue;

// Use radiosity from the point in time where

P emission actually took place.

EXCEI’pt of core |OOp over const Radiosity link =

destination triangles radBuffer.r[(timestep - tauij) * N + dstTrildx];
e Note data-dependent access if(link.B == 0.0f && link.Z == 0.0f) continue;

to previous radiosity buffer const uint index = (dstTrildx - dstTriStart)

* N + srcTrildx;
const kij_t kij = curKijBuffer.f[index];
if(kij == 0.0f) continue;

radBuffer.r[timestep * N + srcTrildx].B +=
clamp@1(kij * calcArea(dstTri)) * link.B;
radBuffer.r[timestep * N + srcTrildx].Z +=
clamp@1(kij * calcArea(srcTri)) * link.Z;

IWOCL 2020 — RTX-RSim ¥ 23

Data Streaming with Latency Hiding

IWOCL 2020 — RTX-RSim 24

Streaming Motivation

Recall that mutual visibility buffer K;; requires N? entries
Therefore GPU memory limited to low triangle counts
Recomputation is not desirable = slowdown by at least factor 10

Solution: asynchronous streaming

® Minimize performance impact by suitable chunking and latency hiding

IWOCL 2020 — RTX-RSim

25

tn

RTX-RSim Streaming Scheme

copy KII]- — buf,

— compute(bufg) — Tadtnl

— true dependence
........... + anti-dependence

tn+1

— bufp

—rade,

copy Kyiy; — bufg

compute(bufy) — rady, i

copy Ku]- — bufp

compute(buf,) — rady, . ;

chunk I

copy KIJ- — bufy

»(compute(bufp) — rade i

chunk 11

chunk 111

chunk I

¢ Linear rather than quadratic in size!

IWOCL 2020 — RTX-RSim

e Requires two extra chunk buffers for double buffering

26

>t

Streaming for Mutual Visibility

® Mutual Visibility step generates K;; = also requires streaming

¢ I[mplementation simpler, only need

Stream out K,j

\ 4

to stream the finished data out once C°mp‘fte ki,

1
|
A 4

e Also less performance critical,

4

Compute K”j Stream out K,,j

since mutual visibility computation

has higher per-element cost

4

Compute K,,,}. Stream out K,,,j

- We actually see speedup with
streaming in some results!

IWOCL 2020 — RTX-RSim 27

Performance Evaluation

All results on an AMD Ryzen TR 2920X + NVIDIA GeForce RTX 2070 system
Note that CPU results are fully parallelized

IWOCL 2020 — RTX-RSim 28

Overall CPU vs. RTX-RSim Comparison

10000 s ® CPU results roughly
-*%-RTX-RSim (GPU) - linear on
+-RSim (CPU) logarithmic scale
1000 s

e GPU result worse

/ at “Small” size
100's (insufficient

' parallelism in
radiosity comp.)
10 s

el ® Factor ~20
Improvement over
CPU at “Medium”

Small Medium Large and larger

IWOCL 2020 — RTX-RSim 29

Speedup of individual phases

oN . c
100.0 4 [= ; h e Very high speedup in
= - = mutual visibility phase
with hardware
S raytracing
N ©
10.0 — = L e Radiosity simulation
5 (@) o 1 1 .
~|| o = S limited by:
(o)
¢ lack of parallelism
at “Small” size
1.0 R :
Small Medium Large SRR

requirements at

O Mutual Visibility O Radiosity Simulation O Other " o
Large” size

IWOCL 2020 — RTX-RSim 30

Rel. Perf. (1.0 = no streaming)

-
o N

0.8

O
o))

0.4

© O
o N

Streaming Performance Impact

Raytracing
O Small

Simulation Total
B Medium

IWOCL 2020 — RTX-RSim

e Raytracing actually
benefits from streaming
(hiding some transfer
latency)

® Roughly 40%
performance impact on
radiosity simulation due
to streaming

* Not ideal, but order of
magnitude better than
recomputation

31

Summary & Conclusion

IWOCL 2020 — RTX-RSim 32

Conclusion

e Using new raytracing hardware for accelerating room response simulation is
both viable and effective

—> Over factor 100 improvement in raytracing-heavy phases compared to CPU

e Vulkan compute shaders are a good cross-platform and cross-vendor
alternative to e.g. CUDA, OpenCL and SYCL if direct interaction with graphics

features is required

e Streaming with full latency hiding allows overcoming GPU memory limits for
this algorithm with moderate performance impact

e But is still limited by PCle bandwidth

IWOCL 2020 — RTX-RSim 33

Thank you for your attention!

peterthoman@uibk.ac.at

Partially funded by the FFG INPACT project.

\\\\\\\\//////,

tofmotion B universitat D PS
depth sensi:gma;nd imaging I n n S b r u C k S

///// ‘ \\\\\ Dist;‘i:buted and Parallel Systems

