
Bringing performant support for Nvidia
hardware to SYCL

Ruyman Reyes Castro

Principal Software Engineer, Programming Models

IWOCL 2020

© 2020 Codeplay Software Ltd.2

Codeplay - Enabling AI to be Open, Safe and Accessible to all

Customers

Integrates all the industry standard technologies
needed to support a very wide range of AI and HPC

C++ platform via the SYCL™ open standard, enabling
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR-V™, HSA™ and Vulkan™

Products

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Addressable Markets

Leaders in enabling high-performance
software solutions for new AI
processing systems

Enabling the toughest processors with
tools and middleware based on open
standards

Established 2002 in Scotland with ~80
employees

Company

Many Major

Companies

Many Major

Companies

Many Major

Companies

© 2020 Codeplay Software Ltd.3

What have we done

CUDA backend for Intel SYCL implementation

• Does not require OpenCL

• All contributions in the open

SYCL Standard contributions

• Experience of porting SYCL to non-OpenCL backend

• Multiple extensions that enable CUDA-specific features

• Overall porting experience

© 2020 Codeplay Software Ltd.4

Data Parallel C++ : C++
and SYCL* standard and

extensions

• “Incorporates” the SYCL
standard for data
parallelism and
heterogeneous
programming Data
Parallel C++ ⇔ DPC++

DPC++ Extends SYCL
1.2.1

• Fast-moving open
collaboration feeding
into the SYCL standard

• Open source
implementation with
goal of upstream LLVM

• DPC++ extensions aim
to become core SYCL,
or Khronos extensions

Codeplay involvement

• Contribute back to the
community from an
independent codebase

• Explore extensions and
actively participate on
oneAPI initiative

DPC++ and SYCL (and Codeplay)

© 2020 Codeplay Software Ltd.5

• NVIDIA, the NVIDIA logo and CUDA are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S.
and/or other countries

• Codeplay is not associated with NVIDIA for this work and it is
purely using public documentation and widely available code

Disclaimer and Trademarks

© 2020 Codeplay Software Ltd.6

• Using SYCL for CUDA

• Overall design of SYCL for CUDA

• Compiler implementation

• Runtime implementation

• Interoperability with existing libraries

• Conclusions and future work

Summary

© 2020 Codeplay Software Ltd.7

Using SYCL for CUDA

© 2020 Codeplay Software Ltd.8

• Build or get a binary package of DPC++
• Daily builds of master in https://github.com/intel/llvm/releases

• Detailed instructions in
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

• Compile your code using the CUDA target triple

• Run your application with the CUDA backend enabled

Using SYCL for CUDA

No changes required to your SYCL
code

Env var used by default device
selection

https://github.com/intel/llvm/releases
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

© 2020 Codeplay Software Ltd.9

Design of SYCL for CUDA

© 2020 Codeplay Software Ltd.10

SYCL 1.2.1 was intended for OpenCL 1.2

• If a SYCL 2.2 ever existed, it was based on OpenCL 2.2

• What could be a good alternative target to demonstrate SYCL as a High Level Model?

• Let’s have an open discussion about SYCL for non-OpenCL!

Sure let’s do Vulkan!

• Not that simple, SYCL was never designed for Graphics

• Already a potential path via clspv + clvk

Have you heard about CUDA?

• Existing OpenCL + PTX path (available on ComputeCpp) not great

• Difficult to maintain but no customer base

• Native CUDA support will be better to expand the ecosystem

SYCL for CUDA

© 2020 Codeplay Software Ltd.11

• What can work?
• Platform model (Platform/Device/Context)

• Buffers, copy

• NDRange kernels

• What cannot work
• Interoperability (no OpenCL types!)

• Images and samplers
• CUDA images are sampled on construction

• SYCL/OpenCL Images are sampled in the kernel

• SYCL program class
• OpenCL compilation model does not match CUDA (e.g. options are different)

SYCL 1.2.1 on CUDA

We have created a number of proposals and provide feedback to the SYCL

WG to make those implementable on a future SYCL version

© 2020 Codeplay Software Ltd.12

SYCL Next

Host backend

Mandatory

No external
dependencies

from SYCL
library

Must execute
on the main
CPU of the

system

OpenCL
backend

Optional
Requires

libOpenCL.so in
the system

CUDA backend

Optional

Requires
libcuda.so in

the system and
an NVIDIA

linker

Main outcome: SYCL “generalization”

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_generalization.md

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_generalization.md

© 2020 Codeplay Software Ltd.13

SYCL module objects

A SYCL module represents a

collection of functions and symbols

that can be used for all devices in the

associated context.

A SYCL module can store different

versions of the same functions and

symbols in different representations.

Each of these versions is called a

device image.

module<module_status status>

device_image device_image device_image

SPIR-V ISA
SPIR-V

with debug

kern0 kern0 kern0

This is a high-level abstraction, NOT a mapping of a SPIR-V or LLVM module

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_modules.md

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_modules.md

© 2020 Codeplay Software Ltd.14

https://github.com/codeplaysoftware/standards-proposals/blob/master/host_task/host_task.md

Host task

Command group that runs a task
on the host inside the SYCL DAG

https://github.com/codeplaysoftware/standards-proposals/blob/master/host_task/host_task.md

© 2020 Codeplay Software Ltd.15

Compiler implementation

© 2020 Codeplay Software Ltd.16

• Current LLVM tip has CUDA support

• This was contributed by Google back in 2016
https://research.google/pubs/pub45226/

• Includes a CUDA runtime implementation and a PTX
backend

• The PTX backend is the interesting part!

Leveraging existing CUDA support

https://research.google/pubs/pub45226/

© 2020 Codeplay Software Ltd.17

Driver (file compilation)

© 2020 Codeplay Software Ltd.18

Driver (linking)

© 2020 Codeplay Software Ltd.19

Converting local memory to Shared memory

Local memory allocation

Usage as an accessor

Multiple allocations of local memory are allowed

© 2020 Codeplay Software Ltd.20

Converting local memory to Shared memory

CUDA Dynamic Shared memory

Declarations, each pointer refers

To an element

Using CUDA Dynamic Shared memory in the CUDA runtime:

Passing the total size of the allocation as last argument

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

© 2020 Codeplay Software Ltd.21

Create a global symbol
to the CUDA shared

memory address space

Transform all pointers to
CUDA shared memory

into a 32 bit integer

Replace all uses of the
pointers by offsets into

the shared memory

Local to Shared transformation
define void @kernel(i8 addrspace(3)* %arg1, i32 addrspace(3)* %arg2) {

@kernel.shared = external addrspace(3) global [0 x i8], align 4

define void @kernel(i8 addrspace(3)* %arg1, i32 addrspace(3)* %arg2) {

@kernel.shared = external addrspace(3) global [0 x i8], align 4

define void @kernel(i32 %0, i32 %1) {

@kernel_shared_mem = external addrspace(3) global [0 x i8], align 4

define void @kernel(i32 %0, i32 %1) {
entry:

%arg1 = getelementptr [0 x i8], [0 x i8] addrspace(3)* @kernel_shared_mem,
i32 0, i32 %0

%2 = getelementptr [0 x i8], [0 x i8] addrspace(3)* @kernel_shared_mem,
i32 0, i32 %1

%arg2 = bitcast i8 addrspace(3)* %2 to i32 addrspace(3)*

© 2020 Codeplay Software Ltd.22

Runtime implementation

© 2020 Codeplay Software Ltd.23

PI/CUDA plugin

CUDA Driver API

Nvidia
device

© 2020 Codeplay Software Ltd.24

The PI API
https://github.com/intel/llvm/blob/sycl/sycl/include/CL/sycl/detail/pi.h

PI API definitions for
Memory Objects

PI API
implementation for

OpenCL

https://github.com/intel/llvm/blob/sycl/sycl/include/CL/sycl/detail/pi.h

© 2020 Codeplay Software Ltd.25

PI CUDA plugin equivalent (example)

Errors are assertions
for developers

Set the active CUDA
context

Register memory if
USE_HOSTPTR

Allocate CUDA
memory if no flags

https://github.com/intel/llvm/blob/sycl/sycl/plugins/cuda/pi_cuda.cpp

https://github.com/intel/llvm/blob/sycl/sycl/plugins/cuda/pi_cuda.cpp

© 2020 Codeplay Software Ltd.26

PI CUDA plugin equivalent (example)
Construct a PI
mem object

PI Mem object, no longer a 1
2 1 map!

© 2020 Codeplay Software Ltd.27

Interoperability

© 2020 Codeplay Software Ltd.28

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md)

Using native libraries in SYCL

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md

© 2020 Codeplay Software Ltd.29

Calling CUDA libraries
queue.submit([&](cl::sycl::handler &cgh) {

auto a_acc = a.get_access<cl::sycl::access::mode::read>(cgh);
auto c_acc = c.get_access<cl::sycl::access::mode::read_write>(cgh);
cgh.interop_task([=](cl::sycl::interop_handler ih) {

auto sc = CublasScopedContextHandler(queue);
auto handle = sc.get_handle(queue);
auto a_ = sc. get_mem<cuDataType *>(ih, a_acc);
auto c_ = sc. get_mem<cuDataType *>(ih, c_acc);
cublasStatus_t err;
err = cublasSgemm(handle, upper_lower, trans, n, k, (cuDataType *)&alpha,

a_, lda, (cuDataType *)&beta, c_, ldc);
});

});
Call native

cublasSgemm

Obtain native CUDA
pointers from buffers

Set the active CUDA
context

Normal command group
with dependencies

© 2020 Codeplay Software Ltd.30

Conclusions and future work

© 2020 Codeplay Software Ltd.31

Preliminary performance results

http://uob-hpc.github.io/BabelStream Platform: CUDA 10.1 on GeForce GTX 980

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Copy Mul Add Triad Dot

BabelStream FP32 MB/s

SYCL for CUDA

CUDA

OpenCL for CUDA

http://uob-hpc.github.io/BabelStream

© 2020 Codeplay Software Ltd.32

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Copy Mul Add Triad Dot

BabelStream FP32 MB/s

SYCL for CUDA

CUDA

OpenCL for CUDA

Experimental branch

Internal experimental branch

© 2020 Codeplay Software Ltd.33

• DPC++ is a working SYCL 1.2.1 compiler with many
extensions that enable oneAPI features

• CUDA backend is integrated into main trunk and is part of
the DPC++ release

• Already lots of comments from community, issues and
even contributed pull requests!

• Currently working towards conformance (as much as is
possible) in SYCL 1.2.1

Conclusions

© 2020 Codeplay Software Ltd.34

• Join us in the intel/llvm repository

• Report issues and feature requests

• Review or contribute Pull requests

Participate!

@codeplaysoft codeplay.cominfo@codeplay.com

