
ComputeAorta

Alastair Murray IWOCL – April 2020

A Toolkit for Implementing

Heterogeneous Programming Models

Ewan Crawford



© 2020 Codeplay Software Ltd.2

Codeplay - Enabling AI to be Open, Safe and Accessible to all

Customers

Integrates all the industry standard technologies 
needed to support a very wide range of AI and HPC

C++ platform via the SYCL™ open standard, enabling 
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR-V™, HSA™ and Vulkan™

Products

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Addressable Markets

Leaders in enabling high-performance 
software solutions for new AI 
processing systems

Enabling the toughest processors with 
tools and middleware based on open 
standards

Established 2002 in Scotland with ~80 
employees

Company



© 2020 Codeplay Software Ltd.3

Stacking Heterogeneous Standards

DSLs
• Tensorflow, Eigen, SYCL-BLAS, SYCL-DNN, OpenCV

Compute
Cpp

• SYCL 1.2.1 implementation

Compute
Aorta

• Enables OpenCL 1.2 and Vulkan 1.x Compute

Mux
• Abstraction layer to implement ComputeAorta on customer hardware



© 2020 Codeplay Software Ltd.4

• ComputeAorta’s role in the stack is:
• To expose the full performance potential of heterogenous hardware
• To provide standards-compliant interfaces for users of the hardware

• Requires a design that scales with minimum effort:
• When supporting new heterogeneous programming standards
• When supporting new customer hardware devices
• Without comprising on performance at any stage

• This talk is about our solutions to these requirements via:
• The intermediate abstraction layer “Mux”
• The toolkit of components we provide to customer teams

Introduction



© 2020 Codeplay Software Ltd.5

Generic 
ComputeAorta

Customized 
ComputeAorta

Customer technology

• Implementations of runtime APIs

• Software implementation of builtin functions

• Device agnostic optimizations

• Testing infrastructure

• Generally by a project team within Codeplay

• Mux API Implementation for target hardware

• Writing device specific code/tests

• Optimizing for performance

• Compiler backend

• Hardware driver

• Simulator

• Any of these may be created by Codeplay

How is ComputeAorta delivered?



© 2020 Codeplay Software Ltd.6

• Absolutely no customer specific functionality in generic code.
• ComputeAorta delivers source to multiple customers.

• Need to provide well-defined and documented interfaces 
between generic and custom code.
• Expect customer teams to not modify generic ComputeAorta source.
• But customer projects may need to extend behavior, so hooks required.

• Large amount of testing must be delivered.
• Customer teams have confidence in correctness, so they can focus on performance.
• Tests on external APIs are implementation independent and refactor agnostic.
• Mux API has generic tests to validate customer specific implementation.

• ComputeAorta does modify Clang and LLVM directly.
• Different customers use different versions, with their own modifications.

Requirements for delivery



© 2020 Codeplay Software Ltd.7

Mux

Heterogeneous standards

Host
CPU

Vulkan APIOpenCL API

Customer 
Device

Toolkit of utilities

Elf Loader

Compiler Tech

OpenCL
Specific

Work-item
Scheduling

WFV DMA

Testing

UnitMux

UnitCL UnitVK

Lit Tests

SPIR-V
Parser

Builtins
Image
Library

Maths
Library



© 2020 Codeplay Software Ltd.8

VK CL

Mux

CPU DSP GPU

Level Zero



© 2020 Codeplay Software Ltd.9

Mux is a Specification

• A specification like the OpenCL or 
Vulkan specifications

• Multiplexes from API to hardware 
device targets

• Build heterogeneous standards on 
top of the interface

• Implement the interface however 
best suits the hardware

• API is lower-level than OpenCL, 
similar level to Vulkan



© 2020 Codeplay Software Ltd.10

• Well defined interface between teams as well as code
• Separation of Intellectual Property

• Why not define a C++ interface with abstract classes?
• Easier for humans to reason about a written specification
• Most types in Mux are opaque, customer teams can implement them as required

• Compared to POCL-like approach, gives each customer 
implementation complete flexibility
• Use hardware driver code and intrinsics
• Optimal work-item/work-group scheduling
• Device debugger integration

Why a C specification?



© 2020 Codeplay Software Ltd.11

• Many aspects of the Vulkan API are attractive
• Mux was strongly influenced by Vulkan as it provides precise control to the developer

• But a current stage we would have to extend it a lot to use as a base API

• Full control over API entry points we want
• Important to minimize work as this is done per customer project

• Avoid stubbing out of undesired features or having to meet conformance

• Don’t need to preserve backwards compatibility
• But do need to justify changes to customer teams

• Quicker to iterate on based on what customers need now

Why not use an existing standard?



© 2020 Codeplay Software Ltd.12

• Make it possible for programmers to write code that achieves 
near to 100% of absolute performance on customer hardware
• Compiler optimizations if they will work on many cases
• Extensions for specialist cases

• Customers are interested in performance even in early stages as 
"will it be fast enough" is the highest risk part of a project
• Pre-written optimizations allows demonstrations of what will be possible

• Software emulate features if required
• Describe the consequences in the optimization guide
• In the future, OpenCL’s deployment flexibility should provide other paths for this, but 

being able to run software out-of-the-box is very useful

Performance Philosophy



© 2020 Codeplay Software Ltd.13

VK CL

Mux

CPU DSP GPU

Level Zero

Building on top of Mux



© 2020 Codeplay Software Ltd.14

• Vanilla upstream Clang front-end
• Used for OpenCL-C clCreateProgramWithSource
• Get new language extensions and support for any new kernel languages
• Can contribute bug-fixes back upstream

• SPIR-V consumption 
• Enables Vulkan, Level Zero
• OpenCL 1.2 cl_khr_il_program extension or core feature in 2.1+
• Vital for SYCL and other technologies further up the stack

• Offline compiler
• Device programs can be compiled offline to a binary format, then loaded at runtime using our 

dependency-less ELF loader module
• ComputeAorta supports building a compiler-less driver with reduced C++ dependencies, where 

programs can only be created from loaded binaries

Kernel Languages



© 2020 Codeplay Software Ltd.15

A Mux target can provide API extensions to expose target-specific 
features. There are two types of extensions which a target can 
expose:

• Runtime extensions - Modify the behaviour of the runtime API

• Compiler extensions - Modify the behaviour of the OpenCL-
C/SPIR/SPIR-V compiler

Registered through CMake hooks we provide rather than Mux API

Customer Extensions



© 2020 Codeplay Software Ltd.16

• Maths library functions matching OpenCL precision 
requirement used for VK.
• Overly accurate for GLSL SPIR-V extended instructions

• Exact for OpenCL SPIR-V extended instructions

• VK uses mangled OpenCL work-item builtins for SPIR-V 
compute builtins
• GlobalInvocationId maps to CL get_global_id()

• LocalInvocationIndex implemented using CL get_local_id()

VK On OpenCL Builtins



© 2020 Codeplay Software Ltd.17

Abstraction Distance

Mux

Vulkan

OpenCL

Maps well: Mux descriptor type for specifying data for a 

given kernel parameter is an exact mapping to Vulkan. CL

can use it to implement clSetKernelArgs efficiently but 

requires more code.

Maps awkwardly: Mux semaphore type for 

synchronisation can be used for OpenCL events, but 

Vulkan synchronisation is more fine-grained, and Level 

Zero events are even more complex.

Take the most constrained model in the case of subtly 

difference behaviours.

• OpenCL queues execute commands in-order by 

default

• Vulkan queues execute commands in arbitrary 

order

• Mux commands are thus executed as if in-order

Perfect mapping

Higher level CL can require

more code but mismatches

are easier to handle than VK.



© 2020 Codeplay Software Ltd.18

Synchronization Primitives

• One way coordination 
from device to hostVkFence

• Device only 
synchronization

VkSempahore

• Bi-directional 
synchronization between 
device and host

VkEvent

Mux Semaphore

•One way 
coordination from 
device to host

•Device side 
synchronization



© 2020 Codeplay Software Ltd.19

VK CL

Mux

CPU DSP GPU

Level Zero

Implementing Mux



© 2020 Codeplay Software Ltd.20

✓Guide to customer teams on 
implementing Mux

✓Test toolkit components

✓Track performance

✓Easy to debug

• Kernel and host code run 
under same process

• CPU can be desktop CPU or 
housekeeping CPU on 
heterogenous device

• Cross compile then run 
natively or on emulator

“Host” Reference CPU Implementation



© 2020 Codeplay Software Ltd.21

Problem On embedded devices building a command stream 
accounts for a significant expenditure of resources. 

APIs ideally provide a way to reuse command streams
✓Vulkan exposes command buffers
✓Level Zero exposes command lists
• OpenCL has currently has no mechanism to achieve this
✓Mux exposes command groups

Command Batching



© 2020 Codeplay Software Ltd.22

Solution Build up Mux command groups by pushing OpenCL 
enqueue calls until a blocking event or flush, incurring a 
dispatch.

CL concept of pending dispatches, where additional 
commands can be pushed when a wait list contains 
compatible cl_events. A pending dispatch tracks:

• Mux command group
• Associated wait & signal Mux semaphores
• Associated wait & signal cl_events
• Callbacks to invoke upon completion

Batching OpenCL Commands



© 2020 Codeplay Software Ltd.23

Push command to the current command group or 
the last pending dispatch

No wait events

Push command to the associated command group
Wait events associated with a 

single pending dispatch

Get an unused command group
Wait events associated with 
multiple pending dispatches

Get an unused command group
Wait events with no associated 

pending dispatches (already 
dispatched)

Analysis of OpenCL wait list



© 2020 Codeplay Software Ltd.24

Whole 
Function 

Vectorizer

STL alternative 
containers Maths Library

ELF Loader
SPIRV to LLVM 
IR translator 

Toolkit Modules



© 2020 Codeplay Software Ltd.25

Clang
C++ 

Maths 
Library

Embed in 
binary

.bc
Bitcode

Load from 
.data 

section at 
runtime

Shared 
Library

Maths Library



© 2020 Codeplay Software Ltd.26

VECZ – SPMD Vectorizer

WI WI WI WI WI WI WI WI

WI WI WI WI WI WI WI WI

VECZ

SIMD PACKET



© 2020 Codeplay Software Ltd.27

• Computing multiple work-items in parallel does not depend 
on special patterns like loops which not all kernels contain

• Configurable by customer team for hardware traits
• Vector width for SIMD packets
• Optimizations, e.g. Branch On Superword Condition Code
• Always enable, or enabled based on heuristic cost model

• See 2015 LLVM developers meeting talk “Creating an SPMD 
Vectorizer for OpenCL with LLVM”

VECZ – SPMD Vectorizer

https://www.youtube.com/watch?v=ePu6c4FLc9I


© 2020 Codeplay Software Ltd.28

Testing

•Automation

•Continuous integration

•Most testing runs on every 
branch before merge.

•Long-running tests run 
nightly.

Jenkins

•Khronos official

•Very strict on math precision

•Not strict on compiler 
accuracy

•No negative testing (i.e. 
doesn’t check for valid errors)

OpenCL CTS

•Developed by Codeplay

•Checks error handling

•Primary regression test suite 
for ComputeAorta.

UnitCL

•Like UnitCL, but for the Mux 
specification.

•ComputeAorta-specific

•Checks Mux implementations 
against the Mux specification.

UnitMux

•Highly targeted compiler 
tests.

•Used to ensure that compiler 
passes have desired effect.

•Used heavily to test that 
debug info is preserved.

Lit

•Khronos official

Vulkan CTS

•Like UnitCL, but for the 
Vulkan specification.

•Covers SPIR-V extensively.

UnitVK

•CLSmith etc.

•Tests the compiler very 
thoroughly

•Open source

•Creates random compiler 
tests

Fuzzing



© 2020 Codeplay Software Ltd.29

Arrayfire Babelstream
Boost-

compute
clBLAS CLBlast clGPU clFFT

clRNG Cloverleaf clSPARSE ComputeApps
ComputeCpp

SDK
Eigen Glow

Halide
opencl-book-

samples
OpenCV SYCL-DNN piglit Polybench pyOpenCL

SYCL-BLAS SYCL-DNN Tensorflow TVM VexCL ViennaCL

Ecosystem



© 2020 Codeplay Software Ltd.30

VK CL

Mux

CPU DSP GPU

Level Zero

Conclusion



© 2020 Codeplay Software Ltd.31

• Supporting multiple heterogeneous standards on a variety of 
devices requires making use of reusable components where 
possible, and allowing custom ones where it is not.

• Hard to predict in advance which parts will need to be 
customized, as exposing heterogeneous hardware capabilities is 
complicated. So follow an approach that allows flexibility.

• We do this primarily through the Mux API, allowing us to:
✓Minimize effort to implement a heterogeneous API on a new device
✓Enable high-performance programs on customer hardware
✓Scale to supporting new standards

Conclusion



@codeplaysoft codeplay.com/codeplaysoft

alastair.murray
@codeplay.com

ewan@codeplay.com


