
Taking Memory Management to the Next Level:
Unified Shared Memory in Action
Michal Mrozek, Ben Ashbaugh, James Brodman

IWOCL 2020

Notices & Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available ​updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

* Other names and brands may be claimed as the property of others.

2

Agenda

3

▪ Let’s look at Shared Virtual Memory

▪ Introducing Unified Shared Memory

▪ Unified Shared Memory in DPC++

▪ Future Plans and Call To Action

Intel Technology

Let’s look at Shared Virtual Memory (SVM) !

4

SVM allocations and devices with local memory

5

GPU

Local Memory

System Memory

CPU
PCI

Compute
Units

Good:
• Direct access to System Memory

Bad:
• Low Bandwidth due to PCI access

SVM allocations and devices with local memory

6

GPU

Local Memory

System Memory

CPU
PCI

Compute
Units

Good:
• Fast access to local memory

Bad:
• Requires transfer to system when host wants to use memory

clSvmAlloc and devices with local memory

7

Problem (1) – Memory placement

• Where to place memory ?

• Host ?

• What if host never access?

• Device ?

• What if caller wants host based
allocation?

OpenCL Context

SVM and multiple devices

8

Problem (2) – Multi device memory
placement

• Where to place memory ?

• First Device Used ?

• All devices ?

• System memory ?

• Automatic migration ?

• How to synchronize contents with
multi local memory placements ?

GPU

Local
Memory

GPU

Local
Memory

GPU

Local
Memory

Driver heuristics are bad!

9

OpenCL 2.0 SVM: Programmer Convenience
(NOT Performance!)

Common Properties:

▪ Pointer Representation, Address Equivalence, Migration to Devices (?)

Coarse Grain Fine Grain

Buffer clSVMAlloc/Free,
Pointer Representation,
Address Equivalence,
Specify All Allocations,
No Concurrent Access,
Map/Unmap

clSVMAlloc/Free,
Pointer Representation,
Address Equivalence,
Specify All Allocations,
Concurrent Access (Fine Grain)
No Map/Unmap

System (N/A) malloc/free,
Pointer Representation,
Address Equivalence,
Access Any Allocation,
Concurrent Access (Fine Grain)
No Map/Unmap

Good!

Good!

Good!

Good!

Good!Good!

Good!Most Implementations
Are Here 

Intel Technology

Introducing Unified Shared Memory (USM)

10

Introducing 3 new memory types

11

GPU

Local Memory

System
Memory

HOST DEVICE

SHARED SHAREDHOST

DEVICE

SHARED

12

Device Allocations: Performance

▪ No Host access

▪ No migration

▪ Available only in one
device

▪ No Map/Unmap

▪ Best Performance
possible

▪ Pointer representation

GPU

Local Memory

DEVICE
Allocation

Compute
Units

void* clDeviceMemAllocINTEL(
cl_context context,
cl_device_id device,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);

13

Host Allocations: Zero Copy Sharing (no Migration)

▪ Accessible by the Host

▪ Placed in Host memory, doesn’t migrate
to local memory

▪ Accessible by all devices in the context

▪ No Map/Unmap

▪ Useful as input / output buffers, Pinned
Memory or Staging Allocation

▪ Possible oversubscription

▪ Pointer representation

▪ Address equivalence

void* clHostMemAllocINTEL(
cl_context context,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);

14

Host Allocation: Direct GPU access to System Memory

GPU

Local Memory

System Memory

CPU
PCI

Compute
Units

HOST
Allocation

15

Shared Allocations: Programmer Convenience

▪ Shared Host-Device Ownership

▪ No Map/Unmap

▪ Automatic Migration Between Host
and Device

▪ Accessible by all devices in context,
passed device show optional initial
placement

▪ Trades control for convenience

▪ Pointer representation

▪ Address equivalence

void* clSharedMemAllocINTEL(
cl_context context,
cl_device_id device,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);

16

Shared allocation – automatic migration to GPU

GPU

Local Memory

System Memory

CPU
PCI

Compute
Units

SHARED

SHAREDSHARED

17

Shared allocation – automatic migration to CPU

GPU

Local Memory

System Memory

CPU
PCI

Compute
Units

SHARED

SHAREDSHARED

SHARED

18

Freeing the memory

▪ Blocking version introduced for convenience,

▪ Waits for completion of all associated
submissions

▪ Useful when application do not want to
track what is used where

▪ Non-Blocking version requires
synchronization from application

cl_int clMemFreeINTEL(
cl_context context,
void* ptr);

cl_int clMemBlockingFreeINTEL(
cl_context context,
void* ptr);

19

Indirect Access

▪ Automatic specification of indirect
usage per kernel

▪ No need to track all allocation and
pass them

▪ Saves CPU clocks (no
need to validate input)

▪ Each memory type has its
own toggle

20

Retrieving information from USM pointers

▪ Currently supported properties:

▪ Allocation type

▪ Base pointer

▪ Allocation size

▪ Associated device

▪ Allocation flags

▪ Allows easy pointer integration to existing
code bases

cl_int clGetMemAllocInfoINTEL(
cl_context context,
const void* ptr,
cl_mem_info_intel param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

Intel Technology

Unified Shared Memory in DPC++

21

Unified Shared Memory in DPC++

USM is supported as a SYCL extension in the DPC++ compiler:

DPC++ = C++ and SYCL and Extensions

USM provides a pointer-based alternative to SYCL buffers:

▪ Simpler and more concise code for common patterns

▪ Easier integration into C++ code bases

▪ Greater control over memory ownership and accessibility

22

USM Code Walk-Through

23

USM allocations are made against a SYCL context

▪ Shared and Device USM allocations may also have an associated SYCL device

USM supports three forms of allocation

▪ malloc-like (this example), templated malloc, std::allocator-like

// setup
ordered_queue q{ platform::get_platforms()[pi].get_devices()[di] };

auto d = q.get_device();
auto c = q.get_context();

auto s_src = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);
auto s_dst = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);

USM Code Walk-Through

24

For Shared and Host USM allocations: simply access on the host!

▪ No need for mapping, unmapping, or accessors

For Device USM allocations: must copy to host-accessible allocations

// initialize memory
for(size_t i = 0; i < gwx; i++)

s_src[i] = (uint32_t)i;
memset(s_dst, 0, gwx * sizeof(uint32_t));

USM Code Walk-Through

25

Kernel lambda can capture and use USM pointers directly!

▪ No need for accessors!

New mechanisms to express dependencies between queue operations:

▪ depends_on: define explicit dependencies between queue operations

▪ ordered_queue type (this example): implicit in-order execution

// execute a kernel to copy buffers
q.parallel_for(range<1>{gwx}, [=](id<1> id) {

s_dst[id] = s_src[id];
});

q.wait();

USM Code Walk-Through

26

Checking results and freeing allocations is straightforward

▪ Free function requires the same SYCL context used for allocation

// check results
if(memcmp(s_dst, s_src, gwx * sizeof(uint32_t)))

std::cerr << "Error: Found mismatches!\n";
else

std::cout << "Success.\n";

// clean up
free(s_src, c);
free(s_dst, c);

Complete Example

27

Checking results and freeing allocations is straightforward

▪ Free function requires the same SYCL context used for allocation

// setup
ordered_queue q{ platform::get_platforms()[pi].get_devices()[di] };
auto c = q.get_context();
auto d = q.get_device();
auto s_src = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);
auto s_dst = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);

// initialize memory
for(size_t i = 0; i < gwx; i++)

s_src[i] = (uint32_t)i;
memset(s_dst, 0, gwx * sizeof(uint32_t));

// execute a kernel to copy buffers
q.parallel_for(range<1>{gwx}, [=](id<1> id) {

s_dst[id] = s_src[id];
});
q.wait();

// check results
if(memcmp(s_dst, s_src, gwx * sizeof(uint32_t)))

std::cerr << "Error: Found mismatches!\n";
else

std::cout << "Success.\n";

// clean up
free(s_src, c);
free(s_dst, c);

Intel Technology

Future Plans and Call to Action

28

Future Plans and Call to Action

29

We recommend including Unified Shared Memory in future standards:

▪ For both OpenCL and SYCL

▪ We will continue to develop USM in DPC++

Try USM!

▪ Your feedback is valuable before standardization!

▪ If you find USM useful, encourage other implementations to support USM!

Thank you!

Useful Links:

30

USM Specifications:

▪ https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

▪ https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_sha
red_memory.asciidoc

USM Implementations:

▪ https://software.intel.com/en-us/oneapi/base-kit

▪ https://github.com/intel/compute-runtime

USM Samples:

▪ https://github.com/intel/compute-samples

▪ https://github.com/bashbaug/SimpleOpenCLSamples/tree/master/samples/usm

▪ https://github.com/bashbaug/simple-sycl-samples/tree/master/samples/dpcpp/usm

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_shared_memory.asciidoc
https://software.intel.com/en-us/oneapi/base-kit
https://github.com/intel/compute-runtime
https://github.com/intel/compute-samples
https://github.com/bashbaug/SimpleOpenCLSamples/tree/master/samples/usm
https://github.com/bashbaug/simple-sycl-samples/tree/master/samples/dpcpp/usm

