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Agenda
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▪ Let’s look at Shared Virtual Memory

▪ Introducing Unified Shared Memory

▪ Unified Shared Memory in DPC++

▪ Future Plans and Call To Action



Intel Technology 

Let’s look at Shared Virtual Memory (SVM) !
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SVM allocations and devices with local memory
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Good: 
• Direct access to System Memory

Bad:
• Low Bandwidth due to PCI access



SVM allocations and devices with local memory
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Good: 
• Fast access to local memory

Bad:
• Requires transfer to system when host wants to use memory



clSvmAlloc and devices with local memory
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Problem (1) – Memory placement

• Where to place memory ?

• Host ? 

• What if host never access?

• Device ?

• What if caller wants host based 
allocation?



OpenCL Context

SVM and multiple devices
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Problem (2) – Multi device memory 
placement

• Where to place memory ?

• First Device Used ? 

• All devices ?

• System memory ?

• Automatic migration ? 

• How to synchronize contents with 
multi local memory placements ?

GPU

Local 
Memory

GPU

Local 
Memory

GPU

Local 
Memory

Driver heuristics are bad!
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OpenCL 2.0 SVM: Programmer Convenience
(NOT Performance!)

Common Properties:

▪ Pointer Representation, Address Equivalence, Migration to Devices (?)

Coarse Grain Fine Grain

Buffer clSVMAlloc/Free,
Pointer Representation,
Address Equivalence,
Specify All Allocations,
No Concurrent Access,
Map/Unmap

clSVMAlloc/Free,
Pointer Representation,
Address Equivalence,
Specify All Allocations,
Concurrent Access (Fine Grain)
No Map/Unmap

System (N/A) malloc/free,
Pointer Representation,
Address Equivalence,
Access Any Allocation,
Concurrent Access (Fine Grain)
No Map/Unmap

Good!

Good!

Good!

Good!

Good!Good!

Good!Most Implementations
Are Here 



Intel Technology 

Introducing Unified Shared Memory (USM)
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Introducing 3 new memory types 
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Device Allocations: Performance

▪ No Host access

▪ No migration

▪ Available only in one 
device

▪ No Map/Unmap

▪ Best Performance 
possible

▪ Pointer representation

GPU

Local Memory

DEVICE
Allocation

Compute
Units

void* clDeviceMemAllocINTEL(
cl_context context,
cl_device_id device,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);
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Host Allocations: Zero Copy Sharing (no Migration)

▪ Accessible by the Host

▪ Placed in Host memory, doesn’t migrate 
to local memory

▪ Accessible by all devices in the context

▪ No Map/Unmap

▪ Useful as input / output buffers, Pinned 
Memory or Staging Allocation

▪ Possible oversubscription

▪ Pointer representation

▪ Address equivalence

void* clHostMemAllocINTEL(
cl_context context,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);
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Host Allocation: Direct GPU access to System Memory
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Shared Allocations: Programmer Convenience

▪ Shared Host-Device Ownership

▪ No Map/Unmap

▪ Automatic Migration Between Host 
and Device 

▪ Accessible by all devices in context, 
passed device show optional initial 
placement

▪ Trades control for convenience

▪ Pointer representation

▪ Address equivalence

void* clSharedMemAllocINTEL(
cl_context context,
cl_device_id device,
const cl_mem_properties_intel* properties,
size_t size,
cl_uint alignment,
cl_int* errcode_ret);
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Shared allocation – automatic migration to GPU
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Shared allocation – automatic migration to CPU
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Freeing the memory

▪ Blocking version introduced for convenience, 

▪ Waits for completion of all associated 
submissions

▪ Useful when application do not want to 
track what is used where

▪ Non-Blocking version requires 
synchronization from application

cl_int clMemFreeINTEL(
cl_context context,
void* ptr);

cl_int clMemBlockingFreeINTEL(
cl_context context,
void* ptr);
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Indirect Access

▪ Automatic specification of indirect 
usage per kernel

▪ No need to track all allocation and 
pass them

▪ Saves CPU clocks (no 
need to validate input)

▪ Each memory type has its 
own toggle
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Retrieving information from USM pointers

▪ Currently supported properties:

▪ Allocation type

▪ Base pointer

▪ Allocation size

▪ Associated device

▪ Allocation flags

▪ Allows easy pointer integration to existing 
code bases

cl_int clGetMemAllocInfoINTEL(
cl_context context,
const void* ptr,
cl_mem_info_intel param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);



Intel Technology 

Unified Shared Memory in DPC++
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Unified Shared Memory in DPC++

USM is supported as a SYCL extension in the DPC++ compiler:

DPC++ = C++ and SYCL and Extensions

USM provides a pointer-based alternative to SYCL buffers:

▪ Simpler and more concise code for common patterns

▪ Easier integration into C++ code bases

▪ Greater control over memory ownership and accessibility
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USM Code Walk-Through
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USM allocations are made against a SYCL context

▪ Shared and Device USM allocations may also have an associated SYCL device

USM supports three forms of allocation

▪ malloc-like (this example), templated malloc, std::allocator-like

// setup
ordered_queue q{ platform::get_platforms()[pi].get_devices()[di] };

auto d = q.get_device();
auto c = q.get_context();

auto s_src = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);
auto s_dst = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);



USM Code Walk-Through
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For Shared and Host USM allocations: simply access on the host!

▪ No need for mapping, unmapping, or accessors

For Device USM allocations: must copy to host-accessible allocations

// initialize memory
for( size_t i = 0; i < gwx; i++ )

s_src[i] = (uint32_t)i;
memset(s_dst, 0, gwx * sizeof(uint32_t));



USM Code Walk-Through
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Kernel lambda can capture and use USM pointers directly!

▪ No need for accessors!

New mechanisms to express dependencies between queue operations:

▪ depends_on: define explicit dependencies between queue operations

▪ ordered_queue type (this example): implicit in-order execution

// execute a kernel to copy buffers
q.parallel_for(range<1>{gwx}, [=](id<1> id) {

s_dst[id] = s_src[id];
});

q.wait();



USM Code Walk-Through
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Checking results and freeing allocations is straightforward

▪ Free function requires the same SYCL context used for allocation

// check results
if( memcmp(s_dst, s_src, gwx * sizeof(uint32_t)) )

std::cerr << "Error: Found mismatches!\n";
else

std::cout << "Success.\n";

// clean up
free(s_src, c);
free(s_dst, c);



Complete Example
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Checking results and freeing allocations is straightforward

▪ Free function requires the same SYCL context used for allocation

// setup
ordered_queue q{ platform::get_platforms()[pi].get_devices()[di] };
auto c = q.get_context();
auto d = q.get_device();
auto s_src = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);
auto s_dst = (uint32_t*)malloc_shared(gwx * sizeof(uint32_t), d, c);

// initialize memory
for( size_t i = 0; i < gwx; i++ )

s_src[i] = (uint32_t)i;
memset(s_dst, 0, gwx * sizeof(uint32_t));

// execute a kernel to copy buffers
q.parallel_for(range<1>{gwx}, [=](id<1> id) {

s_dst[id] = s_src[id];
});
q.wait();

// check results
if( memcmp(s_dst, s_src, gwx * sizeof(uint32_t)) )

std::cerr << "Error: Found mismatches!\n";
else

std::cout << "Success.\n";

// clean up
free(s_src, c);
free(s_dst, c);



Intel Technology 

Future Plans and Call to Action

28



Future Plans and Call to Action
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We recommend including Unified Shared Memory in future standards:

▪ For both OpenCL and SYCL

▪ We will continue to develop USM in DPC++

Try USM!

▪ Your feedback is valuable before standardization!

▪ If you find USM useful, encourage other implementations to support USM!

Thank you!



Useful Links:
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USM Specifications:

▪ https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

▪ https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_sha
red_memory.asciidoc

USM Implementations:

▪ https://software.intel.com/en-us/oneapi/base-kit

▪ https://github.com/intel/compute-runtime

USM Samples:

▪ https://github.com/intel/compute-samples

▪ https://github.com/bashbaug/SimpleOpenCLSamples/tree/master/samples/usm

▪ https://github.com/bashbaug/simple-sycl-samples/tree/master/samples/dpcpp/usm

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_shared_memory.asciidoc
https://software.intel.com/en-us/oneapi/base-kit
https://github.com/intel/compute-runtime
https://github.com/intel/compute-samples
https://github.com/bashbaug/SimpleOpenCLSamples/tree/master/samples/usm
https://github.com/bashbaug/simple-sycl-samples/tree/master/samples/dpcpp/usm



