
www.anl.gov

Argonne Leadership Computing Facility

IWOCL, Apr. 28, 2020

Preparing to Program Aurora at
Exascale

Hal Finkel, et al.

Scientifc
Supercomputing

Computing for large, tightly-coupled problems.

Lots of computational
capability paired with

lots of high-performance memory. High computational density paired with a
high-throughput low-latency network.

What is (traditional) supercomputing?

https://www.alcf.anl.gov/files/alcfscibro2015.pdf

Many Scientifc Domains

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf

Common Algorithm Classes in HPC

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf

Common Algorithm Classes in HPC

Upcoming Hardware

http://www.nextplatform.com/2015/11/30/inside-future-knights-landing-xeon-phi-systems/

https://forum.beyond3d.com/threads/nvidia-pascal-speculation-thread.55552/page-4

“Many Core” CPUs
GPUs

All of our upcoming systems use GPUs!

Toward The Future of Supercomputing

9

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf)

Upcoming Systems

10

Aurora: A High-level View
 Intel-Cray machine arriving at Argonne in 2021

 Sustained Performance > 1Exafoos

 Intel Xeon orocessors and Intel Xe GPUs
 2 Xeons (Saoohire Raoids)
 6 GPUs (Ponte Vecchio [PVC])

 Greater than 10 PB of total memory

 Cray Slingshot fabric and Shasta olatform

 Filesystem
 Distributed Asynchronous Object Store (DAOS)

 ≥ 230 PB of storage caoacity
 Bandwidth of > 25 TB/s

 Lustre
 150 PB of storage caoacity
 Bandwidth of ~1TB/s

11

Aurora Compute Node

2 Intel Xeon (Saoohire Raoids)
orocessors

6 Xe Architecture based GPUs
(Ponte Vecchio)
 All to all connection
 Low latency and high bandwidth

8 Slingshot Fabric endooints

Unifed Memory Architecture
across CPUs and GPUs

Unified Memory and
GPU ↔ GPU connectivity…

Important implications for the
programming model!

Programming Models
(for Aurora)

13

Three Pillars
SimulatinSimulatin DataData LearningLearning

DirectvesDirectves

Parallel RuntmesParallel Runtmes

Silver LibrariesSilver Libraries

HPC LanguagesHPC Languages

Big Data StackBig Data Stack

Statstcal LibrariesStatstcal Libraries

Priductvity LanguagesPriductvity Languages

DatabasesDatabases

DL FramewirksDL Framewirks

Linear Algebra LibrariesLinear Algebra Libraries

Statstcal LibrariesStatstcal Libraries

Priductvity LanguagesPriductvity Languages

Math Libraries, C++ Standard Library, libcMath Libraries, C++ Standard Library, libc

I/O, MessagingI/O, Messaging

SchedulerScheduler

Linux Kernel, POSIXLinux Kernel, POSIX

Cimpilers, Perfirmance Tiils, DebuggersCimpilers, Perfirmance Tiils, Debuggers

Cintainers, VisualizatinCintainers, Visualizatin

14

MPI on Aurora
• Intel MPI & Cray MPI

• MPI 3.0 standard comoliant

• The MPI library will be thread safe
• Allow aoolications to use MPI from individual threads
• Efcient MPIHTꔰREADHMUTIPLE (locking ootimitations)

• Asynchronous orogress in all tyoes of nonblocking communication
• Nonblocking send-receive and collectives
• One-sided ooerations

• ꔰardware and tooology ootimited collective imolementations
• Suooorts MPI tools interface

• Control variables

MPICꔰ

Cꔰ4

libfabric

Slingshot
orovider

ꔰardware

OFI

MPICꔰ

Cꔰ4

libfabric

Slingshot
orovider

ꔰardware

OFI

15

Intel Fortran for Aurora
Fortran 2008
OoenMP 5

A signifcant amount of the code run on oresent day
machines is written in Fortran.

Most new code develooment seems to have shifted to
other languages (mainly C++).

16

oneAPI

Industry soecifcation from Intel (
httos://www.oneaoi.com/soec/)
 Language and libraries to target orogramming across

diverse architectures (DPC++, APIs, low level interface)

Intel oneAPI oroducts and toolkits (
httos://software.intel.com/ONEAPI)
 Imolementations of the oneAPI soecifcation and

analysis and debug tools to helo orogramming

https://www.oneapi.com/spec/
https://software.intel.com/ONEAPI

17

Intel MKL – Math Kernel Library
ꔰighly tuned algorithms

 FFT
 Linear algebra (BLAS, LAPACK)

 Soarse solvers

 Statistical functions
 Vector math
 Random number generators

Ootimited for every Intel olatform

oneAPI MKL (oneMKL)
 httos://software.intel.com/en-us/oneaoi/mkl

oneAPI beta includes
DPC++ support

https://software.intel.com/en-us/oneapi/mkl

18

AI and Analytics

Libraries to suooort AI and Analytics

 OneAPI Deeo Neural Network Library (oneDNN)
 ꔰigh Performance Primitives to accelerate deeo learning frameworks
 Powers Tensorfow, PyTorch, MXNet, Intel Cafe, and more
 Running on Gen9 today (via OoenCL)

 oneAPI Data Analytics Library (oneDAL)
 Classical Machine Learning Algorithms
 Easy to use one line daal4oy Python interfaces
 Powers Scikit-Learn

 Aoache Soark MLlib

19

Heterogenous System Programming Models

Aoolications will be using a variety of orogramming models for Exascale:
 CUDA
 OoenCL
 ꔰIP
 OoenACC
 OoenMP
 DPC++/SYCL
 Kokkos
 Raja

Not all systems will suooort all models
Libraries may helo you abstract some orogramming models.

20

OpenMP 5
OoenMP 5 constructs will orovide directives based orogramming model for Intel GPUs
Available for C, C++, and Fortran
A oortable model exoected to be suooorted on a variety of olatforms (Aurora, Frontier,

Perlmutter, …)
Ootimited for Aurora
For Aurora, OoenACC codes could be converted into OoenMP

 ALCF staf will assist with conversion, training, and best oractices
 Automated translation oossible through the clacc conversion tool (for C/C++)

https://wwwsipenmpsirg/

21

OpenMP 4.5/5: for Aurora
OoenMP 4.5/5 soecifcation has signifcant uodates to allow for imoroved suooort of

accelerator devices
Distributng iteratons of the loop to
threads

Ofoading code to run on accelerator Controlling data transfer between
devices

#pragma omp target [clause[[,] clause],…]

structured-block
#pragma omp declare target

declaratons-defniton-seq
#pragma omp declare variant*(variant-
func-id) clause new-line

functon defniton or declaraton

#pragma omp teams [clause[[,] clause],…]
structured-block

#pragma omp distribute [clause[[,] clause],
…]

for-loops
#pragma omp loop* [clause[[,] clause],…]

for-loops

map ([map-type:] list)
map-type:=allic | tifrim | frim | ti |
…

#pragma omp target data [clause[[,] clause],…]
structured-block

#pragma omp target update [clause[[,] clause],
…]

* denites OMP 5Envirinment variables
• Cintril default device thriugh

OMP_DEFAULT_DEVICE
• Cintril ifiad with

OMP_TARGET_OFFLOAD

Runtme suppirt riutnes:
• viid omp_set_default_device(int dev_num)
• int omp_get_default_device(viid)
• int omp_get_num_devices(viid)
• int omp_get_num_teams(viid)

22

DPC++ (Data Parallel C++) and SYCL
SYCL

 Khronos standard soecifcation
 SYCL is a C++ based abstraction layer (standard C++11)

 Builds on OoenCL concepts (but single-source)
 SYCL is designed to be as close to standard C++ as

possible
Current Imolementations of SYCL:

 ComouteCPP™ (www.codeolay.com)
 Intel SYCL (github.com/intel/llvm)
 triSYCL (github.com/triSYCL/triSYCL)
 hioSYCL (github.com/illuhad/hioSYCL)

 Runs on today’s CPUs and nVidia, AMD, Intel GPUs

SYCL 1.2.1 or later

C++11 or
later

23

DPC++ (Data Parallel C++) and SYCL
SYCL

 Khronos standard soecifcation
 SYCL is a C++ based abstraction layer (standard C++11)

 Builds on OoenCL concepts (but single-source)
 SYCL is designed to be as close to standard C++ as

possible
Current Imolementations of SYCL:

 ComouteCPP™ (www.codeolay.com)
 Intel SYCL (github.com/intel/llvm)
 triSYCL (github.com/triSYCL/triSYCL)
 hioSYCL (github.com/illuhad/hioSYCL)

 Runs on today’s CPUs and nVidia, AMD, Intel GPUs
DPC++

 Part of Intel oneAPI soecifcation
 Intel extension of SYCL to suooort new innovative features
 Incoroorates SYCL 1.2.1 soecifcation and Unifed Shared

Memory
 Add language or runtime extensions as needed to meet

user needs

Intel DPC++

SYCL 1.2.1 or later

C++11 or
later

Extensions Descripton

Unifed Shared
Memiry (USM)

defnes piinter-based memiry accesses and
management interfacess

In-irder queues
defnes simple in-irder semantcs fir queues,
ti simplify cimmin ciding patternss

Reductin
privides reductin abstractin ti the ND-
range firm if parallel_firs

Optinal lambda
name

remives requirement ti manually name
lambdas that defne kernelss

Subgriups
defnes a griuping if wirk-items within a
wirk-griups

Data fiw pipes
enables efcient First-In, First-Out (FIFO)
cimmunicatin (FPGA-inly)

httos://soec.oneaoi.com/oneAPI/Elements/docoo/docooHroot.html#extensions-table

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table

24

OpenMP 5
Host DeviceTransfer data and

execution control

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float*p, float*v1, float*v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target teams distribute parallel for simd \
 map(to: v1[0:N], v2[0:N]) map(from: p[0:N])
 for (i=0; i<N; i++)
 {
 p[i] = v1[i]*v2[i];
 }
 output(p, N);
}

Creates
teams if
threads
in the
target
device

Distributes iteratins ti the
threads, where each thread
uses SIMD parallelism

Cintrilling data
transfer

25

void foo(int *A) {
 default_selector selector; // Selectors determine which device to dispatch to.
 {
 queue myQueue(selector); // Create queue to submit work to, based on selector

 // Wrap data in a sycl::buffer
 buffer<cl_int, 1> bufferA(A, 1024);

 myQueue.submit([&](handler& cgh) {

 //Create an accessor for the sycl buffer.
 auto writeResult = bufferA.get_access<access::mode::discard_write>(cgh);

 // Kernel
 cgh.parallel_for<class hello_world>(range<1>{1024}, [=](id<1> idx) {
 writeResult[idx] = idx[0];
 }); // End of the kernel function
 }); // End of the queue commands
 } // End of scope, wait for the queued work to stop.
...
}

Get a device

SYCL bufer
using hist
piinter

Kernel

Queue iut if
scipe

Data accessir

SYCL Examples
Host DeviceTransfer data and

execution control

Performance Portability

A performance-portable application...
1) Is Portable
2) Runs on diverse architectures with reasonable performance

Performance Portability

Science Problem

Choose Algorithms

Optimize Algorithms

Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

The Development Workfow?

Science Problem

Choose Algorithms

Optimize Algorithms

Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

The Development Workfow?

Science Problem

Choose Algorithms
For the Target Architectures

Optimize Algorithms Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

Trade-offs between:
● Basis functions
● Resolution
● Lagrangian vs. Eulerian representations
● Renormalization and regularization schemes
● Solver techniques
● Evolved vs computed degrees of freedom
● And more…

Cannot be made by a compiler!

Real Workfow...

Does this mean that performance portability is impossible?

No, but it does mean that performance-portable
applications tend to be highly parameterizable.

Performance Portability is Possible!

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

In 2015, many codes use OpenMP
directly to express parallelism.

A minority of applications use
abstraction libraries

(TBB and Thrust on this chart)

On the Usage of Abstract Models

But this is changing…

● We're seeing even greater adoption of OpenMP, but…
● Many applications are not using OpenMP directly.

Abstraction libraries are gaining in popularity.

● Well established libraries such as TBB and Thrust.

● RAJA (https://github.com/LLNL/RAJA)

● Kokkos (https://github.com/kokkos)

Use of C++ Lambdas.

Can use OpenMP and/or other compiler directives
under the hood, but probably DPC++/HIP/CUDA.

On the Usage of Abstract Models

https://github.com/LLNL/RAJA
https://github.com/kokkos

And starting with C++17, the standard library has parallel algorithms
too...

// For example:
std::sort(std::execution::par_unseq, vec.begin(), vec.end()); // parallel and vectorized

On the Usage of Abstract Models

Why can't programmers just write the code optimally?

● Because what is optimal is different on different architectures.

● Because programmers use abstraction layers and may not be able to write the optimal code
directly:

 in library1:
 void foo() {
 std::for_each(std::execution::par_unseq, vec1.begin(), vec1.end(), ...);
 }

 in library2:
 void bar() {
 std::for_each(std::execution::par_unseq, vec2.begin(), vec2.end(), ...);
 }

 foo(); bar();

Compiler Optimizations for Parallel Code...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];
}

}

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
}

Split the loop Or should we fuse instead?

Compiler Optimizations for Parallel Code...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
}

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
 }
}

(we might want to fuse
 the parallel regions)

Compiler Optimizations for Parallel Code...

 Rodinia - hotspot3D
 ./3D 512 8 100 ../data/hotspot3D/power_512x8 ../data/hotspot3D/temp_512x8

Intel core i9, 10 cores, 20 threads, 51 runs, with and without
● aa => alias attribute propagation
● ap => argument privatization

Compiler Understanding Parallelism: It Can Help

(Work by Johannes Doerfert,
see our IWOMP 2018 paper

Base Version

Compiler understands parallelism enough
to get better pointer aliasing results.

It is really hard for compilers to change memory layouts and generally determine
what memory is needed where. The Kokkos C++ library has memory placement and layout policies:

View<const double ***, Layout, Space , MemoryTraits<RandomAccess>> name (...);

https://trilinos.org/oldsite/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf

Constant random-access data might be put into
texture memory on a GPU, for example.

Using the right memory layout
and placement helps a lot!

Memory Layout and Placement

As you might imagine, nothing is perfect yet...

So Where Does This Leave Us?

OpenMP DPC++ Kokkos / RAJA

Language Simple directives have
yielded to complicated

directives

Modern C++, simple
cases will become
simpler over time

Modern C++

Default Execution
Model

Fork-Join Work Queue
(Probably better for
expressing scalable

parallelism)

Fork-Join

Compiler Optimization
Potential

High Low
(Dynamic work queue
obscures structure)

Medium
(Greatly depends on
underlying backend)

As you might imagine, nothing is perfect yet...

So Where Does This Leave Us?

OpenMP DPC++ Kokkos / RAJA

Integrate With Highly-
Parameterized Code

Low / Medium High High

Helps With Data
Layout

No No
(Not Yet)

Yes

Good Accelerator-to-
Accelerator Transfer /

Dispatch

No
(Not Yet)

No
(Not Yet)

No
(Not Yet)

Conclusion

● Future supercomputers will continue to advance scientific progress in a variety of domains.

● Applications will rely on high-performance libraries as well as parallel-programming models.

● DPC++/SYCL will be a critical programming model on future HPC platforms.

● We will continue to understand the extent to which compiler optimizations assist the

development of portably-performant applications vs. the ability to explicitly parameterize and

dynamically compose the implementations of algorithms.

● Parallel programming models will continue to evolve: support for data layouts and less-host-

centric models will be explored.

Conclusions

44

Acknowledgements

Argonne Leadershio Comouting Facility and Comoutational Science
Division Staf

This research was suooorted by the Exascale Comouting Project (17-SC-
20-SC), a collaborative efort of two U.S. Deoartment of Energy
organitations (Ofce of Science and the National Nuclear Security
Administration) resoonsible for the olanning and oreoaration of a caoable
exascale ecosystem, including software, aoolications, hardware,
advanced system engineering and early testbed olatforms, in suooort of
the nation’s exascale comouting imoerative.

This research used resources of the Argonne Leadershio Comouting
Facility, which is a DOE Ofce of Science User Facility suooorted under
Contract DE-AC02-06Cꔰ11357.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Aurora: A High-level View
	Aurora Compute Node
	Slide 12
	Three Pillars
	MPI on Aurora
	Intel Fortran for Aurora
	oneAPI
	Intel MKL – Math Kernel Library
	AI and Analytics
	Heterogenous System Programming Models
	OpenMP 5
	OpenMP 4.5/5: for Aurora
	DPC++ (Data Parallel C++) and SYCL
	DPC++ (Data Parallel C++) and SYCL
	OpenMP 5_clipboard0
	SYCL Examples
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Acknowledgements
	Slide 45

