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What is (traditional) supercomputing?

Computing for large, tightly-coupled problems.
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Many Scientific Domains

BIOLOGICAL SCIENCES 5%

CHEMISTRY 8%
PHYSICS 28% COMPUTER SCIENCE 2%

EARTH SCIENCE 13%

2015 INCITE
BY DOMAIN

3.57 BILLION
CORE-HOURS

MATERIALS SCIENCE 29% ENGINEERING 15%

BIOLOGICAL SCIEMCES &%

l PHYSICS 31%

MATERIALS SCIENCE 19%

CHEMISTRY 11%

COMPUTER SCIENCE 6%

2015 ALCC
BY DOMAIN

174 BILLION
CORE-HOURS

EARTH SCIENCE 7%

ENGINEERING 20%

https://www.alcf.anl.gov/files/alcfscibro2015.pdf



Common Algorithm Classes in HPC

~Algorithm Dense Sparse | Spectral | Particle | g, . | Unstructured e
Scienc linear linear Methods Grids or AMR Intensive
areas algebra algebra (FFTs) Methods Grids

Accelerator

Science X X X X X
Astrophysics X X X X X X X
Chemistry X X X X X
Climate X X X X
Combustion X X X
Fusion X X X X X X
Lattice Gauge X X X X
Material
Science X X X X

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON. pdf




Common Algorithm Classes in HPC
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Upcoming Hardware
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Toward The Future of Supercomputing

“Many Core” CPUs

https://forum.beyond3d.com/threads/nvidia-pascal-speculation-thread.55552/page-4

http://www.nextplatform.com/2015/11/30/inside-future-knights-landing-xeon-phi-systems/



Upcoming Systems

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]
First U.S. Exascale Systems

2012 2016 2018 2020 2021-2023
FRONTIER
ORNL
ORNL ORNL Cray/AMD/AMD

Cray/AMD/NVIDIA

ANL

Intel/Cray
IBM BG/Q
LBNL
Cray/AMD/NVIDIA
- M -
o ’CROSS (ROADS

IBM BG/Q LANL/SNL - LANL/SNL
Cray/Intel Xeon/KNL IBM/NVIDIA TBD LLNL
TBD

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923 ASCAC-Helland:B ﬁrbara Helland.pdf)
( COMPUTING
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Aurora: A High-level View

QO Intel-Cray machine arriving at Argonne in 2021
U Sustained Performance > 1Exaflops

O Intel Xeon processors and Intel Xe GPUs
0 2 Xeons (Sapphire Rapids)
0 6 GPUs (Ponte Vecchio [PVC])

O Greater than 10 PB of total memory
U Cray Slingshot fabric and Shasta platform

O Filesystem

4 Distributed Asynchronous Object Store (DAQS)
= 230 PB of storage capacity
Bandwidth of > 25 TB/s
U Lustre
150 PB of storage capacity
Bandwidth of ~1TB/s
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Aurora Compute Node

12 Intel Xeon (Sapphire Rapids)
Processors

(16 Xe Architecture based GPUs
(Ponte Vecchio)

O All to all connection
O Low latency and high bandwidth

18 Slingshot Fabric endpoints

L Unified Memory Architecture
across CPUs and GPUs
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Programming Models
(for Aurora)
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Three Pillars

HPC Languages Productivity Languages Productivity Languages
Directives Big Data Stack DL Frameworks
Parallel Runtimes Statistical Libraries Statistical Libraries
Solver Libraries Databases Linear Algebra Libraries

Compilers, Performance Tools, Debuggers
Math Libraries, C++ Standard Library, libc
I/0O, Messaging
Containers, Visualization
Scheduler

Linux Kernel, POSIX
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MPI on Aurora

Intel MPI & Cray MPI
 MPI 3.0 standard compliant

The MPI library will be thread safe
* Allow applications to use MPI from individual threads
« Efficient MPI_THREAD_MUTIPLE (locking optimizations)

Asynchronous progress in all types of nonblocking communication
* Nonblocking send-receive and collectives
* One-sided operations

Hardware and topology optimized collective implementations

Supports MPI tools interface
e Control variables

Argonne ¢

MATICMAL LABDRATOR

MPICH

CH4
OFlI

libfabric

Hardware
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Intel Fortran for Aurora

A Fortran 2008
LQOpenMP 5

LA significant amount of the code run on present day
machines is written in Fortran.

Most new code development seems to have shifted to
other languages (mainly C++).

F

ATIONAL LABORATORY

S rORTRAN

B OIBE \WPUT: REASON = OUTPUT: PLEASURE

15



Argonne ¢~

MATICMAL LABDRATORY

oneAPI

QIndustry specification from Intel (

https://www.oneapi.com/spec/) G G
J Language and libraries to target programming across G G G
diverse architectures (DPC++, APIs, low level interface) w

WlIntel oneAPI products and toolkits ( _
https://software.intel.com/ONEAPI) m

dJ Implementations of the oneAPI specification and

analysis and debug tools to help programming 0 n eA P I

16


https://www.oneapi.com/spec/
https://software.intel.com/ONEAPI

Intel MKL - Math Kernel Library

W Highly tuned algorithms

O FFT

d Linear algebra (BLAS, LAPACK)
Sparse solvers

 Statistical functions
d Vector math
J Random number generators

L Optimized for every Intel platform

LoneAPI MKL (oneMKL)

O https://software.intel.com/en-us/oneapi/mkl

oneAPI beta includes
DPC++ support

Argonne ¢

MATICMAL LABDRATOR
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https://software.intel.com/en-us/oneapi/mkl
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Al and Analytics

ULibraries to support Al and Analytics

J OneAPI Deep Neural Network Library (oneDNN)
High Performance Primitives to accelerate deep learning frameworks
Powers Tensorflow, PyTorch, MXNet, Intel Caffe, and more
Running on Gen9 today (via OpenCL)

J oneAPI Data Analytics Library (oneDAL)
Classical Machine Learning Algorithms
Easy to use one line daal4py Python interfaces
Powers Scikit-Learn

J Apache Spark MLlIib

18
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Heterogenous System Programming Models

L Applications will be using a variety of programming models for Exascale:
J CUDA
- OpenCL
J HIP
J OpenACC
J OpenMP
J DPC++/SYCL
J Kokkos
d Raja
QNot all systems will support all models
WLibraries may help you abstract some programming models.

19
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OpenMP 5

L OpenMP 5 constructs will provide directives based programming model for Intel GPUs
W Available for C, C++, and Fortran

L A portable model expected to be supported on a variety of platforms (Aurora, Frontier,
Perlmutter, ...)

L Optimized for Aurora
W For Aurora, OpenACC codes could be converted into OpenMP
J ALCF staff will assist with conversion, training, and best practices
J Automated translation possible through the clacc conversion tool (for C/C++)

OpenMP

https://www.openmp.org/

20



OpenMP 4.5/5: for Aurora

L OpenMP 4.5/5 specification has significant updates to allow for improved support of

accelerator devices

Offloading code to run on accelerator

Distributing iterations of the loop to
threads

Controlling data transfer between
devices

#pragma omp target [clause[[,] clause],...]
structured-block

#pragma omp declare target
declarations-definition-seq

#pragma omp teams [clause[[,] clause]....]
structured-block
#pragma omp distribute [clause[[,] clause],

|

map ([map-type:] list )
map-type:=alloc | tofrom | from | to |

#pragma omp target data [clause[[,] clause],...]

#pragma omp declare variant* (variant- for-loops structured-block
func-id) clause new-line #pragma omp loop* [clause[[,] clause],...] #pragma omp target update [clause[[,] clause],
function definition or declaration for-loops ...]
Runtir}ne support routines: o Environment variables * denotes OMP 5
* void omp_set_default_device(int dev_num) *  Control default device through
* int omp_get_default_device(void) OMP_DEFAULT_DEVICE
* int omp_get_num_devices(void) e Control offload with

* int omp_get_num_teams(void)

OMP_TARGET_OFFLOAD

21
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DPC++ (Data Parallel C++) and SYCL

QSYCL
Khronos standard specification
SYCL is a C++ based abstraction layer (standard C++11)
Builds on OpenCL concepts (but single-source)
SYCL is designed to be as close to standard C++ as
possible

U Current Implementations of SYCL:
ComputeCPP™ (www.codeplay.com)
Intel SYCL (github.com/intel/llvm)
triSYCL (github.com/triSYCL/triSYCL)
hipSYCL (github.com/illuhad/hipSYCL)

d Runs on today’s CPUs and nVidia, AMD, Intel GPUs

SYCL 1.2.1 or later

22



DPC++ (Data Parallel C++) and SY

QSYCL
Khronos standard specification
SYCL is a C++ based abstraction layer (standard C++11)

Builds on OpenCL concepts (but single-source)

SYCL is designed to be as close to standard C++ as
possible

U Current Implementations of SYCL:
ComputeCPP™ (www.codeplay.com)
Intel SYCL (github.com/intel/llvm)
triSYCL (github.com/triSYCL/triSYCL)
hipSYCL (github.com/illuhad/hipSYCL)
U Runs on today’s CPUs and nVidia, AMD, Intel GPUs
QU DPC++
U Part of Intel oneAPI specification
U Intel extension of SYCL to support new innovative features

U Incorporates SYCL 1.2.1 specification and Unified Shared
Memory

U Add language or runtime extensions as needed to meet
user needs

SYCL 1.2.1 or later

Extensions Description
Unified Shared defines pointer-based memory accesses and
Memory (USM) management interfaces.

In-order queues

defines simple in-order semantics for queues,
to simplify common coding patterns.

Reduction

provides reduction abstraction to the ND-
range form of parallel_for.

Optional lambda
name

removes requirement to manually name
lambdas that define kernels.

Subgroups

defines a grouping of work-items within a
work-group.

Data flow pipes

enables efficient First-In, First-Out (FIFO)

communication (FPGA-only)

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table >3



https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table

Argonne

MATICMAL LABDRATOR

OpenMP 5

Host Device

ransfer data and
execution control

Distributes iterations to the

extern void init(float*, float*, int); threads, where each thread
extern void output(float*, int); ses SIMD parallelism
void vec mult(float*p, float*vl, float*v2, int N) . P !
Creates { -
teams of int i;
threads | | init(vl, v2, N);
in the #pragma omp target teams distribute parallel for simd \
target map(to: v1[O:N], v2[0:N]) map(from: p[O:N])
{ L
p[i] = v1[il*v2[i]; Controlling data
} transfer
output(p, N);
}

24
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SYCL Examples

Host

ransfer data and Device

execution control

Get a device

void foo( int *A ) {
default selector selector; // Selectors determine which device to dispatch to.

{
SYCL buffer queue myQueue(selector); // Create queue to submit work to, based on selector
using host // Wrap data in a sycl::buffer
pointer buffer<cl int, 1> bufferA(A, 1024);

myQueue.submit([&] (handler& cgh) {
Data accessor

//Create an accessor for the sycl buffer.
auto writeResult = bufferA.get access<access::mode::discard write>(cgh);

// Kernel
Kernel cgh.parallel for<class hello world>(range<1>{1024}, [=](id<l> idx) {

writeResult[idx] = idx[0];
}); // End of the kernel function

Queue out of }); // End of the queue commands
} // End of scope, wait for the queued work to stop.
scope

25
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Performance Portability

A performance-portable application...
1) Is Portable
2) Runs on diverse architectures with reasonable performance




The Development Workflow?




The Development Workflow?







Performance Portability is Possible!
Does this mean that performance portability is impossible?

No, but it does mean that performance-portable
applications tend to be highly parameterizable.



On the Usage of Abstract Models

v" OpenMP is about 50%, out of all choices of X

Courtesy of Yun (Helen) He, Alice Koniges, et. al,, (NERSC) at OpenMPCon'2015

@® OpenMP

@ CuDA

@ pThreads

@ Other

@ CUDA Fortran
@® OpenACC

@ OpenCL

@ Coarray Fortran
® UPC

@® Intel TBB

@ Intel Cilk

@® Thrust

http://livm-hpc2-workshop.github.io/slides/Tian.pdf



On the Usage of Abstract Models
But this Iis changing...

* We're seeing even greater adoptlon of OpenMP but..
* Many applications are not usmg

* Well established libraries

* RAJA (https://github.com/LLNL/RAJA)

R&JA: iReducesum=reduce_policy, double= pisum{o.o); // the capture-by-value clause [=].
// It also h les any other syntax
. . . ) ) // needed Tor "MDA.
Raja::forall<execute_policy=(begin, numgins, [=](int 1) { Kokkos: :parallel reduce (n, KOKKOS LAMBDA (const int i,
double ¥ = (double(i) + ©.5) / numgins; - - int& lsum) {
pisum += 4.8 / (1.8 + x * x); lsum += i*i;
1 }, sum);

* Kokkos (https://github.com/kokkos)


https://github.com/LLNL/RAJA
https://github.com/kokkos

On the Usage of Abstract Models

And starting with C++17, the standard library has parallel algorithms
too...

Table 2 — Table of parallel algorithms

adjacent_difference adjacent_find all_of any_of

copy copy_1f copy_n count

count_1f equal exclusive_scan fill

fill_n find find_end find first_of
find_1f find_1f_not for_each for_each_n
generate generate_n includes inclusive_scan
inner_product inplace_merge is_heap is_heap_until

1s_partitioned
max_element

mismatch
partial_sort

reduce

remove_1T

replace_if
rotate_copy
set_intersection
stable_partition
transform_exclusive_scan
uninitialized_copy_n
unigue_copy

1s_sorted

merge

move

partial_sort_copy

remove

replace

reverse

search
set_symmetric_difference
stable _sort
transform_inclusive_scan
uninitialized_fill

1s_sorted_until
min_element
none_of
partition
remove_copy
replace_copy
reverse_copy
search_n
set_union
swap_ranges
transform_reduce

lexicographical_compare
minmax_element
nth_element
partition_copy
remove_copy_ 1f
replace_copy_1if
rotate
set_difference
sort

transform
uninitialized _copy

uninitialized_fill_n unique

[ Note: Mot all algorithms in the Standard Library have counterparts in Table 2, — end note ]




Compiler Optimizations for Parallel Code...

Why can't programmers just write the code optimally?
* Because what is optimal is different on different architectures.

* Because programmers use abstraction layers and may not be able to write the optimal code
directly:

in library1l.:
void foo() {
std::for_each(std::execution::par_unseq, vecl.begin(), vecl.end(), ...);

}

in library2:
void bar() {
std::for_each(std:.execution::par_unseq, vec2.begin(), vec2.end(), ...);

}
foo(); bar();



Compiler Optimizations for Parallel Code...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (Ii=0;i<n; ++i) {
ali] = e[i[*(bli]*c[i] + d[i]) + f[i];
mli] = q[iI*(n[iT*ofi] + pfi]) + r[i;

}
@ Split the loop Or should we fuse instead?

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;1<n;++i){

afi] = efil*(b[i*cfi] + d[i]) + fil;
}

#pragma omp parallel for
for (i=0;i<n;++i){

} m[i] = q[i*(n[i*o[i] + p[i]) + r{if



Compiler Optimizations for Parallel Code...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for(i=0;i<n;++){
a[i] = e[il*(b[if*cfi] + dfi]) + f[i;

#pragma omp parallel for

for (i=0; i <n; ++i) { void foo(double * restrict a, double * restrict b, etc.) {
m[i] = g[i*(n[i]*o[i] + p[i]) + r[i]; #pragmrgl omp parallel |

} {
} E> #pragma omp for
for (I=0;i<n; ++i) {
ali] = e[il*(bliT*c(i] + dfi]) + f[i];

(we might want to fuse )

_ #pragma omp for
the parallel regions) for (i=0;i<n; ++) {

} m[i] = q[i*(n[iT*o[i] + p[i]) + r(if

}
}



Compiler Understanding Parallelism: It Can Help
Rodinia - hotspot3D

/3D 512 8 100 ../data/hotspot3D/power_512x8 ../data/hotspot3D/temp_512x8
hotspot3D

0.31 0.164 0.165 0.163
0.351 47.42%

0.30 -

0.251

time in seconds

0.20

0. 15 7 %
,b’b

(7]
&
‘O'b

—

=

& R

e

versions

Intel core 19, 10 cores, 20 threads, 51 runs, with and without (Work by Johannes Doerfert,

e aa => alias attribute propagation see our IWOMP 2018 paper
e ap => argument privatization



Memory Layout and Placement

It is really hard for compilers to change memory layouts and generally determine
what memory is needed where. The Kokkos C++ library has memory placement and layout policies:

View<const double ***, Layout, Space , MemoryTraits<RandomAccess>> name (...);

M correct layout
(with texture)

# correct layout
without texture

M wrong layout
(with texture)

Xeon Xeon Phi K20x

« Large loss in performance with wrong layout

https://trilinos.org/oldsite/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf




So Where Does This Leave Us?

As you might imagine, nothing is perfect yet...

OpenMP DPC++ Kokkos / RAJA
Language Simple directives have Modern C++, simple Modern C++
yielded to complicated cases will become
directives simpler over time
Default Execution Fork-Join Work Queue Fork-Join
Model (Probably better for
expressing scalable
parallelism)
Compiler Optimization High Low Medium
Potential (Dynamic work queue (Greatly depends on

obscures structure) underlying backend)



So Where Does This Leave Us?

As you might imagine, nothing is perfect yet...

OpenMP DPC++ Kokkos / RAJA
Integrate With Highly- Low / Medium High High
Parameterized Code
Helps With Data No No Yes
Layout (Not Yet)
Good Accelerator-to- No No No
Accelerator Transfer / (Not Yet) (Not Yet) (Not Yet)

Dispatch



Conclusion
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Conclusions

Future supercomputers will continue to advance scientific progress in a variety of domains.
Applications will rely on high-performance libraries as well as parallel-programming models.
DPC++/SYCL will be a critical programming model on future HPC platforms.

We will continue to understand the extent to which compiler optimizations assist the
development of portably-performant applications vs. the ability to explicitly parameterize and
dynamically compose the implementations of algorithms.

Parallel programming models will continue to evolve: support for data layouts and less-host-

centric models will be explored.

-
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