Automated OpenCL GPU
kernel fusion for Stan Math

Tadej Ciglari¢ (presenter)*, Rok Ce¥novar, Erik Strumbelj

117:11\ llrl'l
Ll

University of Ljubljana
Faculty of Computer and
Information Science

Stan

 State-of-the-art software for
Bayesian statistics.

* Probabilistic programming language
+ Math library with auto-
differentiation + Inference
algorithms.

* Some operations have an OpenCL
implementation.

Overview

/ MATHLBRARY

writes STAN MODEL compilation | COMPILED MODEL references oxecutes on

CPU

(Stan code) (C++ code)

Stan user

4 D

GPU CODE
: KERNEL GENERATOR
writes - APl calls .| OpencL executes on
writes KERNEL runtime
GENERATOR
CODE

GPU developer \\ //

GPU development in
the Stan Math library

* Hundreds of possible operations and
distributions to implement for GPUs.

* Sequence of basic kernels: simple to
develop, poor performance.

 Specialized kernels: good
performance, slow development.

Kernel fusion

e Execution of multiple operations in a

: fusion
single kernel.
e Speedup: kernel launch overhead, 9
memory transfers between registers
and global memory. o ﬁ#')

e Can be automated.
e Data fusion.

e Parallel fusion.

Implementation: interface

Lazy evaluation:

e Operations are C++ objects,

e expression is evaluated when assigned to result matrix.

Curiously Recurring Template Pattern:

template <typename T_a, typename T_b>
class addition_ : public binary_operation<addition <T_a, T_b>, T_a, T_b> {
public:
addition (T_a&& a, T _b&& b)
: binary operation<addition <T_a, T b>, T a, T _b>(
std: :forward<T_a>(a), std::forward<T_b>(b), "+") {}

}s

template <typename T_a, typename T_b,
typename = require_all valid expressions t<T a, T b>>
inline addition_<as operation cl t<T_a>, as operation cl t<T_b>> operator+(T_a&&
a, T b&& b) {
return {as_operation_cl(std::forward<T_a>(a)),
as_operation cl(std::forward<T b>(b))};

Implementation: operation types

Example:

matrix_cl<double> a, b;
double c;
matrix_cl<double> d = ¢ * (a + b);

a + b

addition_<load <matrix_cl<double>&>, load <matrix_cl<double>&>>

c * (a + b)

elewise_multiplication_<scalar_<double>, addition_<load_<matrix_cl<double>&>, load_<matrix_cl<double>&>>>

Assignment of an expression to a matrix generates, compiles and executes a kernel.

Implementation: generating kernel code

Operation objects generate code for their operation:

_load:

double [NAME] = ©;
if (!(('contains_nonzero([NAME] view, LOWER) && j < i) ||
(!contains_nonzero([NAME] view, UPPER) && j > i))) {
[NAME] = [NAME] global[i + [NAME] rows * j];
}

~addition:

double var4 = var2 + var3;

_load:

var5 global[i + var5_rows * j] = var4;

Complete kernel

kernel void calculate(__global double varil,
__global double* var2 global, int var2 rows, int var2 view,
__global double* var3 global, int var3 rows, int var3 view
__global double* var6_global, int var6 _rows, int var6 _view){
int i = get global id(9);
int j = get global id(1);
double var2 = 0;
if (!((!contains_nonzero(var2_view, LOWER) && j < i) ||
(!contains_nonzero(var2_ view, UPPER) && j > i))) {
var2 = var2 global[i + var2_rows * j];
}
double var3 = 0;
if (!((!'contains_nonzero(var3 view, LOWER) && j < i) ||
(!contains_nonzero(var3_ view, UPPER) && j > 1i))) {
var3 = var3 _global[i + varl rows * j];
}
double var4 = var2 + var3;
double var5 varl * var4;
varé_global[i + var6_rows * j] = var5;

Adding a new operation

* New class for the operation (derived
from operation cl or
operation _cl lhs).

e Must define:
e Scalar,

* generate,

e view.

* Optional: generate lhs, rows, cols.

e A function that constructs the object.

Empirical validation

 Comparison with a sequence of
basic kernels.

 Comparison with a hand crafted
kernel.

* Comparison with VexCL, a similar
library.

e On NVIDIA GeForce GTX 1070 and
AMD Radeon VII.

._;;_f.?.'-fff'j',"? “ w\
> \\\\\\m\\\\\\\\\\\\\“\“"\‘l‘l““\“{\\\
— | i =N\ &
Silon [8 e .'\\\"’
un\\\\x\m\\m TN Oy
N\

I
B\

D
v/

AMD Radeon VII
Comparison with a T
sequence of basic kernels e
) S S S—
* Single operation kernel is 0@—.——_—1
comparable. B
° Sequence |S mUCh faster Rr% NVIDIA GeForce GTX1070
S — .
g,
e Matrix multiplication is slow, so B ———
speedups are negligible. 2 —1 - o
* We also avoid memory reallocations, 0+ y-f-"r=== — . -
which are slow on NVIDIA GPU.
0 1000 2000 3000 4000 5000

N

1.05+

Comparison with a
hand crafted kernel

0.95+

* On Bayesian linear regression.

0.90 1
* Comparable performance. S 000400 250407 506407 756407 100408
. § 2000
* Much simpler to use. 1057
[* . 3
1.00 4 V&. ______ i_ _____ !ﬁ-——!. -
0.951 .
0.90 1 .. . ! ! !
Oe+00 1e+05 2e+05 3e+05 4e+0s

Comparison with VexCL

* Transposition and colwise sum are
much faster.

* Rowwise sum is slightly slower.

e Other operations and multi-
operation kernels are comparable.

* Also supports general tensors and
multiple OpenCL devices.

log2(speedup)

AMD Radeon VI

memc=a+b

meme=2%a+3*b=4%"c-1.1%d

= wmssm b = sinh(expm1(tanh(log10(a))))
=g b = rowwise_sum(a)
=== b = colwise_sum(a)

mos b = transpose(a)

NVIDIA GeForce GTX1070

0

1000 2000 3000
N

4000

I
5040

Conclusion

e Performance is comparable to hand
crafted kernels.

e As simple to use as calling premade
kernels.

e Our work is similar to VexCL and
Tensorflow XLA.

