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Stan

• State-of-the-art software for 
Bayesian statistics.

• Probabilistic programming language 
+ Math library with auto-
differentiation + Inference 
algorithms.

• Some operations have an OpenCL
implementation.



Overview



GPU development in 
the Stan Math library

• Hundreds of possible operations and 
distributions to implement for GPUs.

• Sequence of basic kernels: simple to 
develop, poor performance.

• Specialized kernels: good 
performance, slow development.



Kernel fusion

• Execution of multiple operations in a 
single kernel.

• Speedup: kernel launch overhead, 
memory transfers between registers 
and global memory.

• Can be automated.

• Data fusion.

• Parallel fusion.



Lazy evaluation:
• Operations are C++ objects,

• expression is evaluated when assigned to result matrix.

Curiously Recurring Template Pattern:

template <typename T_a, typename T_b>
class addition_ : public binary_operation<addition_<T_a, T_b>, T_a, T_b> {
public:
addition_(T_a&& a, T_b&& b)

: binary_operation<addition_<T_a, T_b>, T_a, T_b>(
std::forward<T_a>(a), std::forward<T_b>(b), "+") {}

};

template <typename T_a, typename T_b,
typename = require_all_valid_expressions_t<T_a, T_b>>

inline addition_<as_operation_cl_t<T_a>, as_operation_cl_t<T_b>> operator+(T_a&& 
a, T_b&& b) {
return {as_operation_cl(std::forward<T_a>(a)),

as_operation_cl(std::forward<T_b>(b))};
}

Implementation: interface



Example:

matrix_cl<double> a, b;

double c;

matrix_cl<double> d = c * (a + b);

a + b
addition_<load_<matrix_cl<double>&>, load_<matrix_cl<double>&>>

c * (a + b)
elewise_multiplication_<scalar_<double>, addition_<load_<matrix_cl<double>&>, load_<matrix_cl<double>&>>>

Assignment of an expression to a matrix generates, compiles and executes a kernel.

Implementation: operation types



Operation objects generate code for their operation:

_load:
double [NAME] = 0;

if (!((!contains_nonzero([NAME]_view, LOWER) && j < i) ||

(!contains_nonzero([NAME]_view, UPPER) && j > i))) {

[NAME] = [NAME]_global[i + [NAME]_rows * j];

}

_addition:
double var4 = var2 + var3;

_load:
var5_global[i + var5_rows * j] = var4;

Implementation: generating kernel code



kernel void calculate(__global double var1,
__global double* var2_global, int var2_rows, int var2_view,
__global double* var3_global, int var3_rows, int var3_view
__global double* var6_global, int var6_rows, int var6_view){
int i = get_global_id(0);
int j = get_global_id(1);
double var2 = 0;
if (!((!contains_nonzero(var2_view, LOWER) && j < i) ||
(!contains_nonzero(var2_view, UPPER) && j > i))) {
var2 = var2_global[i + var2_rows * j];

}
double var3 = 0;
if (!((!contains_nonzero(var3_view, LOWER) && j < i) ||
(!contains_nonzero(var3_view, UPPER) && j > i))) {
var3 = var3_global[i + var1_rows * j];

}
double var4 = var2 + var3;
double var5 = var1 * var4;
var6_global[i + var6_rows * j] = var5;

}

Complete kernel



Adding a new operation

• New class for the operation (derived
from operation_cl or 
operation_cl_lhs).

• Must define:

• Scalar,

• generate,

• view.

• Optional: generate_lhs, rows, cols.

• A function that constructs the object.



Empirical validation

• Comparison with a sequence of 
basic kernels.

• Comparison with a hand crafted 
kernel.

• Comparison with VexCL, a similar 
library.

• On NVIDIA GeForce GTX 1070 and 
AMD Radeon VII.



Comparison with a 
sequence of basic kernels

• Single operation kernel is 
comparable.

• Sequence is much faster.

• Matrix multiplication is slow, so 
speedups are negligible.

• We also avoid memory reallocations, 
which are slow on NVIDIA GPU.



Comparison with a 
hand crafted kernel

• On Bayesian linear regression.

• Comparable performance.

• Much simpler to use.



Comparison with VexCL

• Transposition and colwise sum are 
much faster.

• Rowwise sum is slightly slower.

• Other operations and multi-
operation kernels are comparable.

• Also supports general tensors and 
multiple OpenCL devices.



Conclusion

• Performance is comparable to hand 
crafted kernels.

• As simple to use as calling premade 
kernels.

• Our work is similar to VexCL and 
Tensorflow XLA.


