
Automated OpenCL GPU
kernel fusion for Stan Math

Tadej Ciglarič (presenter)*, Rok Češnovar, Erik Štrumbelj

*

Stan

• State-of-the-art software for
Bayesian statistics.

• Probabilistic programming language
+ Math library with auto-
differentiation + Inference
algorithms.

• Some operations have an OpenCL
implementation.

Overview

GPU development in
the Stan Math library

• Hundreds of possible operations and
distributions to implement for GPUs.

• Sequence of basic kernels: simple to
develop, poor performance.

• Specialized kernels: good
performance, slow development.

Kernel fusion

• Execution of multiple operations in a
single kernel.

• Speedup: kernel launch overhead,
memory transfers between registers
and global memory.

• Can be automated.

• Data fusion.

• Parallel fusion.

Lazy evaluation:
• Operations are C++ objects,

• expression is evaluated when assigned to result matrix.

Curiously Recurring Template Pattern:

template <typename T_a, typename T_b>
class addition_ : public binary_operation<addition_<T_a, T_b>, T_a, T_b> {
public:
addition_(T_a&& a, T_b&& b)

: binary_operation<addition_<T_a, T_b>, T_a, T_b>(
std::forward<T_a>(a), std::forward<T_b>(b), "+") {}

};

template <typename T_a, typename T_b,
typename = require_all_valid_expressions_t<T_a, T_b>>

inline addition_<as_operation_cl_t<T_a>, as_operation_cl_t<T_b>> operator+(T_a&&
a, T_b&& b) {
return {as_operation_cl(std::forward<T_a>(a)),

as_operation_cl(std::forward<T_b>(b))};
}

Implementation: interface

Example:

matrix_cl<double> a, b;

double c;

matrix_cl<double> d = c * (a + b);

a + b
addition_<load_<matrix_cl<double>&>, load_<matrix_cl<double>&>>

c * (a + b)
elewise_multiplication_<scalar_<double>, addition_<load_<matrix_cl<double>&>, load_<matrix_cl<double>&>>>

Assignment of an expression to a matrix generates, compiles and executes a kernel.

Implementation: operation types

Operation objects generate code for their operation:

_load:
double [NAME] = 0;

if (!((!contains_nonzero([NAME]_view, LOWER) && j < i) ||

(!contains_nonzero([NAME]_view, UPPER) && j > i))) {

[NAME] = [NAME]_global[i + [NAME]_rows * j];

}

_addition:
double var4 = var2 + var3;

_load:
var5_global[i + var5_rows * j] = var4;

Implementation: generating kernel code

kernel void calculate(__global double var1,
__global double* var2_global, int var2_rows, int var2_view,
__global double* var3_global, int var3_rows, int var3_view
__global double* var6_global, int var6_rows, int var6_view){
int i = get_global_id(0);
int j = get_global_id(1);
double var2 = 0;
if (!((!contains_nonzero(var2_view, LOWER) && j < i) ||
(!contains_nonzero(var2_view, UPPER) && j > i))) {
var2 = var2_global[i + var2_rows * j];

}
double var3 = 0;
if (!((!contains_nonzero(var3_view, LOWER) && j < i) ||
(!contains_nonzero(var3_view, UPPER) && j > i))) {
var3 = var3_global[i + var1_rows * j];

}
double var4 = var2 + var3;
double var5 = var1 * var4;
var6_global[i + var6_rows * j] = var5;

}

Complete kernel

Adding a new operation

• New class for the operation (derived
from operation_cl or
operation_cl_lhs).

• Must define:

• Scalar,

• generate,

• view.

• Optional: generate_lhs, rows, cols.

• A function that constructs the object.

Empirical validation

• Comparison with a sequence of
basic kernels.

• Comparison with a hand crafted
kernel.

• Comparison with VexCL, a similar
library.

• On NVIDIA GeForce GTX 1070 and
AMD Radeon VII.

Comparison with a
sequence of basic kernels

• Single operation kernel is
comparable.

• Sequence is much faster.

• Matrix multiplication is slow, so
speedups are negligible.

• We also avoid memory reallocations,
which are slow on NVIDIA GPU.

Comparison with a
hand crafted kernel

• On Bayesian linear regression.

• Comparable performance.

• Much simpler to use.

Comparison with VexCL

• Transposition and colwise sum are
much faster.

• Rowwise sum is slightly slower.

• Other operations and multi-
operation kernels are comparable.

• Also supports general tensors and
multiple OpenCL devices.

Conclusion

• Performance is comparable to hand
crafted kernels.

• As simple to use as calling premade
kernels.

• Our work is similar to VexCL and
Tensorflow XLA.

