Multi-Platform SYCL Profiling
with TAU

Nicholas Chaimov
Sameer Shende
Allen Malony

ParaTools, Inc.

IWOCL 2020

* Motivation: platform-agnostic performance
counter profiling

* What is TAU?

e Early Implementation Work
— NVIDIA: hipSYCL + CUPTI
— AMD: hipSYCL + rocprofiler

— Intel: OpenCL library wrapping
— Intel: oneAPI Level Zero tool interface

e Performance portability

— We want code to be not just portable, but
performance portable

— Analyzing requires ability to make measurements
across platforms.

— Vendor-specific tools are not cross-platform.
— TAU with SYCL

* Provide a cross-platform performance tool for a cross-
platform programming model

The TAU Performance System®

« Tuning and Analysis Utilities (25+ TAU Architecture
year projec Instrumentation ~ Measurement ~ Analysis
. HH 2 gyﬂ(':\;r: ‘ Sgrémgava g f;?}tii%lgyg:;?écblock loop - P:nr:ry;oefrea\;astﬂlwb
(] C Odrn re h e n S I Ve p e rfo rm a n Ce p rOfI I I n g o Robust parsers (PDT) o :'gtead;;g, ec:r:munication o P:an‘l:bMal;':arallel profile
an raCIng Wrapping P O : o PerfExplorer parallel
o Interposition Profiling profile data mining
— Integrated, scalable, flexible, portable s i ’ ? amttr shapemet ’ Tracing
Linking _i | oprobe, sampling, hybrid | i | © ks et
— Ta r etS d I I . Ra}.a I I el . . z S::f:é;ﬁgamic ; T g o'I.'race ;analyslsl visualizer
programmihg/execution paradigms | TR0 cavaing | o | Vanpi Jumpsho
Executable Sé o Open Trace Format (OTF) %)
o [B)%lmﬁ)ﬁmonAO) g Metzidata i g m
- © system, user-aefine .

Integrated performance toolkit
Instrumentation, measurement, analysis, visualization
Widely-ported performance profiling / tracing system
Performance data management and data mining
Open source (BSD-style license)

Integrates with runtimes and application
frameworks

ParaTools

TAU Supports All HPC Platforms

C/C++

GPI
t:mtr:n OpenACC j5y5 MPI
PHRrEats Intel MIC OpenMP
Intel
e PGI Cray Sun
MinGW . Al
ey, Linux Windows
. Insert §
yours | BlueGene Fujitsu ARM

here MPC

Parstoos

TAU Supports All HPC Platforms

C/C++

GPI
tll:ortr:n OpenACC j,,7 MPI
PERTEats Intel MIC OpenMP
Intel PGl Cray SUF
MinGW

Linux Windows AIX

% BlueGene Fujitsu ARM
MPC

ParaTools

Measurement Approaches

Profiling Tracing

9647.318

LEQ_IKSWEEPT
4357.213 [LEQ_BICGSOT

2669.887 L. | LEG_MATVECT
1777.752 | SOLVE_SPECIES_EQ
1417.986 [] SOLVE_LIN_EQ
1028.448 [l PHYSICAL_PROP
783.402 [| RRATES
682.376 [L] LEQ_MSOLVET
530.858 [i] INIT_AB_M

463.788 [] CALC_MASS_FLUX_SPHR
446.025 [INIT_MU_S

Shows
how much time
was spent in each
routine

Shows
when events
take place on a
timeline

Paratoos

Performance Data Measurement

Direct via Probes Indirect via Sampling

S(t)
Sl
call TAU START (‘name’) (/
/ L 9 10 11 12 13

call TAU STOP(‘name’) 01 ... i 4 5 &6 78\{\£ /L)/ t

« Exact measurement « No code modification
* Fine-grain control * Minimal effort
« Calls inserted into code * Relies on debug

or runtime symbols (-g option)

ParaTools

Questions TAU Can Answer

How much time is spent in each application routine and outer
loops? Within loops, what is the contribution of each statement?

How many instructions are executed in these code regions?
Floatigg point, Level 1 and 2 data cache misses, hits, branches
taken”

What is the memory usage of the code? When and where is
memory allocated/de-allocated? Are there any memory leaks?

What are the 1/0 characteristics of the code? What is the peak
read and write bandwidth of individual calls, total volume?

What is the extent of data transfer between host and a GPU?
In applications using various programming models, such as
CUDA, HIP, OpenCL, Kokkos, SYCL, etc.

What is the contribution of each phase of the program? What
is the time wasted/spent waiting for collectives, and /O
operations in Initialization, Computation, 1/O phases?

How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

Paratoos

TAU’s Support for Runtime Systems

* OpenCL

— OpenCL profiling interface

— Track timings of kernels
* OpenACC

— OpenACC instrumentation API

— Track data transfers between host and device (per-variable)

— Track time spent in kernels
* CUDA

— Cuda Profiling Tools Interface (CUPTI)

— Track data transfers between host and GPU

— Track access to uniform shared memory between host and GPU
* ROCm

— Rocprofiler and Roctracer instrumentation interfaces

— Track data transfers and kernel execution between host and GPU
 Python

— Python interpreter instrumentation API

— Tracks Python routine transitions as well as Python to C transitions

ParaTools

SYCL Profiling on NVIDIA GPUs

(5 oo oCam) Proof-of-concept implementation
- using hipSYCL.

e CUPTI

— Synchronous callbacks for host-side
i API calls.

oo Devcs — Asynchronous callbacks for device-
side events.

< Profile > (Trace > * Hardware performance counter access.
Data Data

* Phase-based profiling to correlate
T T = CUDA kernels back to SYCL code.

e — CUPTI external correlation ID

CPU ' Register |

Callback Launch Kernel

GPU

ParaTools

SYCL Profiling on AMD GPUs

° parallel for(count, kernel functor([=](id<> item) {
() t h NVI D I int i = item.get global(0);
As wi A, our

1
r[i] = a[i] + b[i] +

1))

proof-of-concept

implementation uses d—Q

phase

hipSYCL.

v interce

events
ption callbacks

* rocProfiler library for callbacks from AMD ROCm.
— No equivalent to CUPTI’s external correlation IDs.

— Interception API allows user-provided data to be

attached to interception callback.

* But interception API requires serializing kernel dispatches.

ParaTools

SYCL Profiling on Intel Embedded GPUs (1)

parallel for(count, kernel functor([=](id<> item) {
int i = item.get global(0);
r[i] = a[i] + b[i] + c[i];

)i

!

Intel SYCL
(clang)

O TAU
interposed

wrapper A
OpenCL |—

* Initial implementation of Intel
SYCL based on OpenCL backend.

 TAU provides wrapper libraries
around OpenCL API functions
which replace the runtime-
provided versions.

* Wrapper for clCreateCommandQueue and
clCreateCommandQueueWithProperties force profiling on.

 Each wrapper
— Starts a timer

— If relevant, records a context event indicating the size and source line of a

transfer

— Calls the underlying system version of the function

— Stops the timer

* Loaded into unmodified application with LD_PRELOAD or through linker

script at link time

ParaTools

SYCL Profiling on Intel Embedded GPUs (2)

* Event names from OpenCL profiling interface
provide mangled name of originating functor
from SYCL code.

* |Intel Level Zero Tools Interface
— No external correlation ID support

— However, event name contains enough context
information to avoid need

— Tracer Markers allow user-provided data to be
inserted into the event stream

ParaTools

Download TAU

http://tau.uoregon.edu

http://taucommander.com
https://e4s.io
Free download, open source, BSD license

Questions?
Contact support@paratools.com

ParaTools

http://tau.uoregon.edu/
http://taucommander.com/
http://e4s.io/

