
IWOCL 2020

Nicholas Chaimov
Sameer Shende
Allen Malony

ParaTools, Inc.

• Motivation: platform-agnostic performance
counter profiling

• What is TAU?
• Early Implementation Work
– NVIDIA: hipSYCL + CUPTI
– AMD: hipSYCL + rocprofiler
– Intel: OpenCL library wrapping
– Intel: oneAPI Level Zero tool interface

2

• Performance portability
– We want code to be not just portable, but

performance portable
– Analyzing requires ability to make measurements

across platforms.
– Vendor-specific tools are not cross-platform.
– TAU with SYCL

• Provide a cross-platform performance tool for a cross-
platform programming model

3

• Tuning and Analysis Utilities (25+ year project)

• Comprehensive performance profiling
and tracing
– Integrated, scalable, flexible, portable
– Targets all parallel

programming/execution paradigms

4

•Integrated performance toolkit
Instrumentation, measurement, analysis, visualization
Widely-ported performance profiling / tracing system
Performance data management and data mining
Open source (BSD-style license)

•Integrates with runtimes and application
frameworks

5

Fortran
C/C++

Java

GNU

MPI
OpenMP

PGI

CUDA UPC

Cray

Python

Intel
LLVM

pthreads

MinGW
Linux Windows AIX

Sun

OpenACC

Insert
yours
here

Intel MIC

BlueGene

GPI

Fujitsu ARM
OpenSHMEMMPCAndroid

6

Fortran
C/C++

Java

GNU

MPI
OpenMP

PGI

CUDA UPC

Cray

Python

Intel
LLVM

pthreads

MinGW
Linux Windows AIX

Sun

OpenACC
Intel MIC

BlueGene

GPI

Fujitsu ARM
OpenSHMEMMPCAndroid

SYCL

Profiling Tracing

7

Shows
how much time

was spent in each
routine

Shows
when events

take place on a
timeline

8

Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into code

or runtime

• No code modification
• Minimal effort
• Relies on debug

symbols (-g option)

call TAU_START(‘name’)
// code
call TAU_STOP(‘name’)

• How much time is spent in each application routine and outer
loops? Within loops, what is the contribution of each statement?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches
taken?

• What is the memory usage of the code? When and where is
memory allocated/de-allocated? Are there any memory leaks?

• What are the I/O characteristics of the code? What is the peak
read and write bandwidth of individual calls, total volume?

• What is the extent of data transfer between host and a GPU?
In applications using various programming models, such as
CUDA, HIP, OpenCL, Kokkos, SYCL, etc.

• What is the contribution of each phase of the program? What
is the time wasted/spent waiting for collectives, and I/O
operations in Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

9

• OpenCL
– OpenCL profiling interface
– Track timings of kernels

• OpenACC
– OpenACC instrumentation API
– Track data transfers between host and device (per-variable)
– Track time spent in kernels

• CUDA
– Cuda Profiling Tools Interface (CUPTI)
– Track data transfers between host and GPU
– Track access to uniform shared memory between host and GPU

• ROCm
– Rocprofiler and Roctracer instrumentation interfaces
– Track data transfers and kernel execution between host and GPU

• Python
– Python interpreter instrumentation API
– Tracks Python routine transitions as well as Python to C transitions

10 10

• Proof-of-concept implementation
using hipSYCL.

• CUPTI
– Synchronous callbacks for host-side

API calls.
– Asynchronous callbacks for device-

side events.
• Hardware performance counter access.

• Phase-based profiling to correlate
CUDA kernels back to SYCL code.
– CUPTI external correlation ID

Copyright © ParaTools, Inc. 11

SYCL
Source hipSYCL CUDA

TAU

Device
Events

Host
Events

Profile
Data

Trace
Data

CUPTI

parallel_for(count, kernel_functor([=](id<> item) {
 int i = item.get_global(0);
 r[i] = a[i] + b[i] + c[i];
}));

hipSYCL CUDA

CUPTI

eventsexternal correlation ID

TAU

• As with NVIDIA, our
proof-of-concept
implementation uses
hipSYCL.

Copyright © ParaTools, Inc. 12

parallel_for(count, kernel_functor([=](id<> item) {
 int i = item.get_global(0);
 r[i] = a[i] + b[i] + c[i];
}));

hipSYCL ROCm

roc-
profilerTAU

phase events
interception callbacks

events

• rocProfiler library for callbacks from AMD ROCm.
– No equivalent to CUPTI’s external correlation IDs.
– Interception API allows user-provided data to be

attached to interception callback.
• But interception API requires serializing kernel dispatches.

• Initial implementation of Intel
SYCL based on OpenCL backend.

• TAU provides wrapper libraries
around OpenCL API functions
which replace the runtime-
provided versions.

Copyright © ParaTools, Inc. 13

parallel_for(count, kernel_functor([=](id<> item) {
 int i = item.get_global(0);
 r[i] = a[i] + b[i] + c[i];
}));

Intel SYCL
(clang)

OpenCL

TAU
interposed
wrapper

• Wrapper for clCreateCommandQueue and
clCreateCommandQueueWithProperties force profiling on.

• Each wrapper
– Starts a timer
– If relevant, records a context event indicating the size and source line of a

transfer
– Calls the underlying system version of the function
– Stops the timer

• Loaded into unmodified application with LD_PRELOAD or through linker
script at link time

Copyright © ParaTools, Inc. 14

• Event names from OpenCL profiling interface
provide mangled name of originating functor
from SYCL code.

• Intel Level Zero Tools Interface
– No external correlation ID support
– However, event name contains enough context

information to avoid need
– Tracer Markers allow user-provided data to be

inserted into the event stream

http://tau.uoregon.edu
http://taucommander.com

https://e4s.io
Free download, open source, BSD license

15
15

Questions?
Contact support@paratools.com

http://tau.uoregon.edu/
http://taucommander.com/
http://e4s.io/

