Software

DATA PARALLEL G++

Extending SYCL Through Extensions for Productivity and
Performance

James Brodman, Michael Kinsner, Ben Ashbaugh, Jeff Hammond, Alexey Bader, John Pennycook, Jason Sewall, Roland Schulz

SYCLcon 2020

290>

Outline

" |ntro

= DPC++ Extensions
— Unified Shared Memory
— Unnamed Kernel Lambda
— In-order Queues
— Sub-groups
— Reductions
— Simplifications

= Summary

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

DPC++ Extends SYCL* 1.2.1

DPC++ = modern C++ and SYCL and Extensions
Enhance Productivity
= Simple things should be simple to express

» Reduce verbosity and programmer burden

Enhance Performance
= Give programmers control over program execution

* Enable hardware-specific features

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Unified Shared Memory (USM)

SYCL 1.2.1 provides the Buffer abstraction for memory
= Very powerful, elegantly expresses data dependences

However...

» Replacing all pointers and arrays with buffers in a C++ program can be a
burden to programmers

USM provides a pointer-based alternative in DPC++
= Simplifies porting to an accelerator

= Gives programmers the desired level of control

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

What is USM?

Allocation Types APIs

_ _ _ _ void* sycl::malloc host(size t size, ..)
device Allocations in device memory void* sycl::malloc_shared(size_t size, ..)

host Allocations in host memory T* sycl::malloc shared<T>(size_ t count, ..)
accessible by the device

shared Allocations accessible by both sycl::free(void *ptr, ..)
host and device that may
migrate between them void queue::memcpy(void* dest,

const void* src, size t count)

Refer to for more information regarding performance & optimization choices in intei software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Buffer Example

auto A
Declare C++ Arrays auto B
auto C

for (int i = 0; 1 < N; i++) {
A[i] = i; B[1i] = 2*i;
}

(int *) malloc(N * sizeof(int));
(int *) malloc(N * sizeof(int));
(int *) malloc(N * sizeof(int));

buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s
g.wait();
} // A,B,C updated

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

(int *) malloc(N * sizeof(int));
(int *) malloc(N * sizeof(int));
(int *) malloc(N * sizeof(int));

for (int i = 0; 1 < N; i++) {

Initialize C++ Arrays A[i] = i; B[i] = 2*i;

auto A
Declare C++ Arrays auto B
auto C

}

buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s
g.wait();
} // A,B,C updated

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

auto A = (int *) malloc(N * sizeof(int));
Declare C++ Arrays auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; 1 < N; i++) {
A[i] = i; B[1i] = 2*i;
}

Initialize C++ Arrays

Declare Buffers buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});

buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s
g.wait();
} // A,B,C updated

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

auto A = (int *) malloc(N * sizeof(int));
Declare C++ Arrays auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; 1 < N; i++) {
A[i] = i; B[1i] = 2*i;
}

Initialize C++ Arrays

Declare Buffers buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});

buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s
g.wait();
} // A,B,C updated

Declare Accessors

~~

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

auto A = (int *) malloc(N * sizeof(int));
Declare C++ Arrays auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; 1 < N; i++) {
A[i] = i; B[1i] = 2*i;
}

Initialize C++ Arrays

Declare Buffers buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});

buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s
g.wait();
} // A,B,C updated

Declare Accessors

Use Accessors in Kernel

| pecereaues |

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

auto A = (int *) malloc(N * sizeof(int));
Declare C++ Arrays auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; 1 < N; i++) {
A[i] = i; B[i] = 2*i;
}

Initialize C++ Arrays

Declare Buffers buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});

buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];

1)

})s

C++ Arrays Updated q.wait();
} // A,B,C updated

Declare Accessors

Use Accessors in Kernel

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

USM Example

int *A = malloc shared<int>(N,

Declare USM Arrays int *B = malloc_shared<int>(N,
int *C = malloc shared<int>(N,

for (int i = 0; i < N; i++) {
A[i] = 1i; B[i] = 2*i;
}

g.submit([&] (handler& h) {
auto R = range{N};
h.parallel for(R, [=] (id<1>
C[ID] = A[ID] + B[ID];
1)

1)
g.wait();

a);
a);
a);

ID)

// A,B,C updated and ready to use

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

int *A = malloc shared<int>(N,

Declare USM Arrays int *B = malloc_shared<int>(N,
int *C = malloc shared<int>(N,

for (int i = 0; i < N; i++) {
Initialize USM Arrays A[i] = i; B[i] = 2*i;
}

g.submit([&] (handler& h) {
auto R = range{N};
h.parallel for(R, [=] (id<1>
C[ID] = A[ID] + B[ID];
1)

1)
g.wait();

a);
a);
a);

ID)

// A,B,C updated and ready to use

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Declare USM Arrays

Initialize USM Arrays

Read/Write USM Arrays

int *A = malloc shared<int>(N,
int *B = malloc shared<int>(N,
int *C = malloc shared<int>(N,

for (int i = 0; i < N; i++) {
A[i] = 1i; B[i] = 2*i;
}

g.submit([&] (handler& h) {
auto R = range{N};
h.parallel for(R, [=] (id<1>
C[ID] = A[ID] + B[ID];
1)

1)
g.wait();

a);
a);
a);

ID)

// A,B,C updated and ready to use

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Declare USM Arrays

Initialize USM Arrays

Read/Write USM Arrays

USM Arrays Updated

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

int *A = malloc shared<int>(N,
int *B = malloc shared<int>(N,
int *C = malloc shared<int>(N,

for (int i = 9; i < N; i++) {
A[i] = i; B[1] = 2*i;
}

g.submit([&] (handler& h) {
auto R = range{N};
h.parallel for(R, [=] (id<1>
C[ID] = A[ID] + B[ID];
1)

1)
g.wait();

a);
a);
a);

ID)

// A,B,C updated and ready to use

http://software.intel.com/en-us/articles/optimization-notice

Task Scheduling with USM

Explicit Scheduling DPC++ Graph Scheduling
= Submitting a kernel returns an Event » Build Task Graphs from Events

= Wait on Events to order tasks
auto R

range<1>{N};

auto E = g.submit([&] (handler& h) { auto E = q.submit([&] (handler& h) {
auto R = range<1>{N}; h.parallel_for(R, [=] (id<1> ID) {..});

h.parallel for(R, [=] (id<1> ID) { 0¥

auto 1 = ;D[@]; . g.submit([&] (handler& h) {
C[i] = A[i] + B[i]; h.depends_on(E);

1) h.parallel for(R, [=] (id<1> ID) {..});
1) 1OF
E.wait();

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Why Unified Shared Memory?

USM makes it easier to get applications running on an accelerator
= Easier integration into C++ apps

» Shared allocations handle data movement for the programmer

— Faster time to working program, fewer errors

Check out the IWOCL presentation from Michal Mrozek on USM in OpenCL:

= “Taking memory management to the next level — Unified Shared Memory in
action”

* Learn how USM differs from OpenCL SVM

Refer to

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

for more information regarding performance & optimization choices in Intel software products.

http://software.intel.com/en-us/articles/optimization-notice

Unnamed Kernel Lambda

SYCL 1.2.1 requires all kernels to have

a unigue name: g.submit([&] (handler& h) {

= Functor class type auto R = range{N};

= Template typename for Lambdas h.parallel_for<class VAdd>(

R, [=](id<1> ID) {
DPC++ removes this requirement for C[ID] = A[ID] + B[iD];
Lambdas })});

= Must use DPC++ compiler for both host
and device code

= Enabled via compiler switch or dpcpp
executable

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Unnamed Kernel Lambda

SYCL 1.2.1 requires all kernels to have

a unigue name: g.submit([&] (handler& h) {

= Functor class type auto R = range{N};

= Template typename for Lambdas h.parallel_for(

R, [=](id<1> ID) {
DPC++ removes this requirement for C[ID] = A[ID] + B[ID];
Lambdas })});

= Must use DPC++ compiler for both host
and device code

= Enabled via compiler switch or dpcpp
executable

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

In-order Queue

DPC++ Queues are out-of-order // Without in-order Queues
queue (q,
= Allows expressing complex DAGs auto R = range{N};
Linear task chains are common auto E = q.submit([&] (handler& h) {

h.parallel for(R, [=] (id<1> ID) {..});
= DAGs are overkill here and add verbosity 1);

Simple things should be simple to auto F = q.submit([&] (handler& h) {
h.depends on(E);
express h.parallel for(R, [=] (id<1> ID) {..});

* |n-order semantics express the linear 1

task pattern easily q.submit([&] (handler& h) {
h.depends on(F);
h.parallel for(R, [=] (id<1> ID) {..});
1)

Refer to for more information regarding performance & optimization choices in Intel software products. /tb
nie

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

In-order Queue

DPC++ Queues are out-of-order // With in-order Queues

queue g{property::queue::in_order()};
= Allows expressing complex DAGs auto R = range{N};
Linear task chains are common q.submit([&] (handler& h) {

h.parallel for(R, [=] (id<1> ID) {..});
= DAGs are overkill here and add verbosity 1);

Simple things should be simple to Q-;ubmitﬂ&% iha?glef&]hz_g > D) L)
.parallel for(R, [=] (id<1> w})s
express 1y
- In—ordersemant.ics express the linear q.submit([&] (handler& h) {
task pattern easily h.parallel for(R, [=] (id<1> ID) {..});
1)

Refer to for more information regarding performance & optimization choices in Intel software products. /tb
nie

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Sub-groups in DPC++

Implementation-defined subset of work-items in a work-group

Work-items in a sub-group execute “together”

= e.g. SIMD instructions, NVIDIA* warps, AMD* wavefronts, fibers/coroutines

’_\

AN
\y
/ \
f I
(—
I —

\\ / Sub-group

< 4

N

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Example: Sub-groups in DPC++

g.parallel for(R, [=](nd_item<1> it)
[[intel::reqd_sub_group size(8)]] /* Request specific sub-group size */ {

// Get handle to the sub-group this item belongs to
sub_group sg = it.get sub _group();

// Optimized code when all work-items in the sub-group take the same branch
bool condition = ...;
if (all of(sg, condition)) {

int sum = reduce(sg, x, plus<>()); // Accumulate partial results from all work-items

}
// Otherwise, fall back to less efficient path

else {

}...
1)

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Reductions in DPC++

Reduction kernels combining multiple values to produce a single output appear frequently across applications from multiple
domains

Reductions have simple semantics...

» The input values can be combined in any order

Only the final result is meaningful

... butimplementing high-performance reductions is non-trivial:
* How many input values are there?

* How much parallelism is there?

What features does the hardware have? (e.g. atomic instructions, scratchpads)

DPC++ shifts implementation burden from developers to compiler/runtime

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Example: Reductions in DPC++

// Compute dot-product by reducing all values using standard plus functor
g.parallel for(R, reduction(sum, 0, plus<float>()), [=](nd_item<1> it, auto& partial sum) {

int i = it.get global id(0); 1
partial sum += (a[i] * b[i]);
}).wait();

1. Areduction operation is described by:
* Areduction variable (e.g. sum)
» An (optional) identity variable (e.g.)
* A combination operation (e.g. plus<float>())

2. The kernel lambda accepts a reference to a reducer per work-item
* Restricts interface to prevent updates incompatible with the combination operation

3. Implementation combines reducers and updates reduction variable before kernel
completes

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Language and API Simplifications

Simple things should be simple to express!

* Class Template Argument Deduction (CTAD)

— buffer<int, 2> b(ptr, range<2>(5, 5)) -
buffer b(ptr, range(5, 5)), etc.

= Queue shortcuts
— Useful when combined with USM

— q.submit([&] (handler& h) { h.parallel for(..); } -
g.parallel for(..);

= More planned

Refer to for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice

Summary

DPC++ builds upon the strong foundation of SYCL
* Builds upon SYCL 1.2.1 with new features that:

— Make simple things simple to express

— Provide access to hardware-specific features
= We hope many of these extensions appear in a future version of SYCL
New features being developed through a community project

= https://github.com/intel/llvm

» Specifications for the extensions found there or at https://www.oneapi.com/

o
Refer to for more information regarding performance & optimization choices in Intel software products. /j S
intel \¥

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice
https://github.com/intel/llvm
https://www.oneapi.com/

S
O
ftwa
re

