
SYCL-Bench
A Versatile Single-Source Benchmark Suite for Heterogeneous Computing

IWOCL/SYCLcon 2020

Sohan Lal
Nicolai Stawinoga

Aksel Alpay (Speaker)
Vincent Heuveline

Philip Salzmann
Peter Thoman
Thomas Fahringer

Biagio Cosenza

1 / 19



SYCL implementation ecosystem
▶ Growing SYCL implementation ecosystem

Figure: SYCL implementations. (Figure is part of the hipSYCL project: https://github.com/illuhad/hipSYCL)

▶ How do SYCL implementations compare in terms of performance for given hardware and code?
2 / 19



Motivation

• SYCL relies heavily on implicit behavior
• SYCL implementations use different optimizations

▶ Patterns efficient in one implementation may be inefficient in another
• Performance implications are not consistently documented across implementations

▶ Will my SYCL implementation overlap compute/data transfers?
▶ Will my SYCL implementation avoid unnecessary data transfers?
▶ What is the runtime overhead of different SYCL implementations?

• SYCL allows testing a wide variety of hardware → interesting for hardware characterization
⇒ A benchmark suite dedicated to characterizing SYCL implementations and hardware is needed

3 / 19



SYCL-Bench

• SYCL-Bench main goals
▶ Hardware characterization
▶ SYCL implementation characterization
▶ SYCL-specific benchmarks to evaluate SYCL-runtime

• SYCL-Bench contains three categories
▶ Microbenchmarks
▶ Applications/Single kernels
▶ SYCL runtime benchmarks

• First benchmark suite focused entirely on SYCL
• Composed of original benchmarks and SYCL ports from Rodinia1 and PolyBench2

• Open source: https://github.com/bcosenza/sycl-bench

1S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Sang-Ha Lee and K. Skadron. ”Rodinia: A Benchmark Suite for
Heterogeneous Computing”. IEEE International Symposium on Workload Characterization, Oct 2009.

2L.-N. Pouchet, U. Bondhugula, et al. The polybench benchmarks.
http://www.cse.ohio-state.edu/~pouchet/software/polybench

4 / 19



SYCL-Bench Features

▶ Benchmarking framework (e.g. common command line arguments) for easy extension
▶ Verification layer for (almost) all benchmarks
▶ Focus on reproducibility using test profiles and run-suite script
▶ Automated execution of the entire benchmark suite
▶ All results can be automatically saved to a single csv output file
▶ Mechanisms to make sure that no undesired data transfers are measured
▶ Measure total execution time and kernel time if SYCL implementation supports queue profiling
▶ Where appropriate, provides benchmarks in many variants with different template types or SYCL

kernel submission mechanisms

5 / 19



SYCL implementation support

▶ Goal: Support all SYCL implementations
▶ Tested with ComputeCpp (PTX, SPIR backends), hipSYCL (CPU, CUDA, ROCm backends)
▶ Experimental/partial support for LLVM SYCL and LLVM SYCL CUDA backend
▶ triSYCL WIP

6 / 19



Common arguments

▶ --size=<problem-size> – to scale problem size (usually, translates to global range of work
items)

▶ --local=<local-size> – work group size (not utilized by all benchmarks)
▶ --num-runs=<N> – number of runs for runtime average/median calculation
▶ --device=<d> – select cpu or gpu
▶ --no-verification – disable verification
▶ --no-ndrange-kernels – skip kernels using ndrange parallel for

7 / 19



Benchmarks

Benchmark Name Short Domain
DRAM, arith, sf, local_mem, - Microbenchmarking
host_device_bandwidth - Microbenchmarking
mol_dyn MD Physics Simulation
nbody NBODY Physics Simulation
scalar_prod SP Linear Algebra
vec_add VA Linear Algebra
2mm(from PolyBench) 2MM Linear Algebra
3mm(from PolyBench) 3MM Linear Algebra
atax(from PolyBench) ATAX Linear Algebra
bicg(from PolyBench) BICG Linear Algebra
gemm(from PolyBench) GEMM Linear Algebra
gesummv(from PolyBench) GESUM Linear Algebra
gramschmidt(from PolyBench) GRAMS Linear Algebra
mvt(from PolyBench) MVT Linear Algebra
syr2k(from PolyBench) SYR2K Linear Algebra
syrk(from PolyBench) SYRK Linear Algebra

8 / 19



Benchmarks

Benchmark Name Short Domain
fdtd2d(from PolyBench) FTD2D Stencils
2DConvolution(from PolyBench) 2DCON Image Processing
3DConvolution(from PolyBench) 3DCON Image Processing
sobel3/5/7 SOBEL3/5/7 Image Processing
median MEDIAN Image Processing
correlation(from PolyBench) CORR Data Mining
covariance (from PolyBench) COV Data Mining
lin_reg_coeff LRC Data Analytics
lin_reg_error LRE Data Analytics
blocked_transform BT SYCL runtime benchmarking
dag_task_throughput_independent DTI SYCL runtime benchmarking
dag_task_throughput_sequential DTS SYCL runtime benchmarking
reduction RD Parallel pattern
segmentedreduction SRD Parallel pattern

▶ …actual number of obtained results much larger! (templated kernels and different SYCL kernel
invocation mechanisms)

9 / 19



Experimental Evaluation

Hardware:
▶ Intel Xeon CPU E5-2699 v3
▶ NVIDIA Titan X

Software:
▶ Ubuntu 16.04
▶ hipSYCL master(12406c8c) + clang 9 + LLVM 9 OpenMP + CUDA 10.1
▶ ComputeCpp 1.3 + Intel OpenCL 18.1.0.013 + CUDA 10.1 OpenCL
▶ SYCL-bench test profile from sohan-dev branch

10 / 19



Microbenchmarks

SYCL-Bench includes five microbenchmarks for device characterization

DRAM
▶ 1D: Measure memory bandwidth by copying SP/DP values between two buffers
▶ 2D/3D: Additionally quantify the quality of mapping of work items to hardware threads

host_device_bandwidth
▶ Measure host ⇔ device copy bandwidth for 1D/2D/3D contiguous and strided buffers

local_mem
▶ Measure bandwidth by continuously swapping SP/DP values in local memory

arith / sf
▶ Measure arithmetic / special function throughput
▶ FMA / sin(tan(cos(x))) in a loop

11 / 19



Microbenchmarks on NVIDIA Titan X

SP
 1D

SP
 2D

SP
 3D

DP 1
D

DP 2
D

DP 3
D

0

50

100

150

200

250

300

Ba
nd

wi
dt

h 
[G

iB
/s

]

(a) DRAM Bandwidth

D2H
 1D

 C

D2H
 1D

 S

D2H
 2D

 C

D2H
 2D

 S

D2H
 3D

 C

D2H
 3D

 S

H2D
 1D

 C

H2D
 1D

 S

H2D
 2D

 C

H2D
 2D

 S

H2D
 3D

 C

H2D
 3D

 S
0

2

4

6

8

10

Ba
nd

wi
dt

h 
[G

iB
/s

]

(b) Host/Device Bandwidth

SP DP
0

500

1000

1500

2000

2500

3000

3500

Ba
nd

wi
dt

h 
[G

iB
/s

]

(c) Local Memory

INT SP DP
0

1400

2800

4200

5600

7000
Th

ro
ug

hp
ut

 [I
NT

 G
OP

/s
, S

P 
GF

LO
P/

s] (d) Arithmetic Throughput

SP DP
0

20

40

60

80

100

Th
ro

ug
hp

ut
 [S

P 
GO

P/
s]

(e) SFU Throughput

0

140

280

420

560

700

Th
ro

ug
hp

ut
 [D

P 
GF

LO
P/

s]

0

2

4

6

8

10

Th
ro

ug
hp

ut
 [D

P 
GO

P/
s]

ComputeCpp PTX Kernel only hipSYCL CUDA

12 / 19



hipSYCL and ComputeCpp on Xeon E5-2699 v3

LR
E

LR
C

MEDIA
N MD

SPH
SPND

SOBEL3

SOBEL5

SOBEL7 VA

2D
CON

2M
M

3D
CON

3M
M

AT
AX

BIC
G

CORR
COV

FTD2D

GEMM

GESUM

GRAMS
MVT

SYR2K
SYRK

AVG
10−3

10−2

10−1

100

101

102
E

xe
cu

tio
n

Ti
m

e
(S

ec
)

hipSYCL ComputeCpp

▶ Cases where hipSYCL is much slower than ComputeCpp (LRC, SPND) are caused by ndrange
parallel for invocations

▶ ⇒ ndrange parallel for is not performance portable!

13 / 19



hipSYCL and ComputeCpp on NVIDIA Titan X

LR
E

LR
C

MEDIA
N MD

SPH
SPND

SOBEL3

SOBEL5

SOBEL7 VA

2D
CON

2M
M

3D
CON

3M
M

AT
AX

BIC
G

CORR
COV

FTD2D

GEMM

GESUM

GRAMS
MVT

SYR2K
SYRK

AVG
10−4

10−3

10−2

10−1

100

101

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

hipSYCL ComputeCpp-Kernel-Only ComputeCpp

▶ hipSYCL results are overall times: kernel + overheads
▶ ComputeCpp PTX backend mainly limited by runtime overheads

14 / 19



SYCL runtime benchmarking

Let’s look at task throughput of SYCL implementations!

sequential task throughput
▶ Submits many kernels which all require r/w access to the same buffer → SYCL implementation

needs to order them sequentially
▶ kernels are trivial: single work group, atomic add to counter for validation.
▶ Problem size corresponds to number of kernels submitted

independent task throughput
▶ Submits many kernels which all require r/w access to different buffers → SYCL implementation

can execute multiple kernels simultaneously
▶ kernels are trivial: Single work group, work item 0 sets buffer content for validation
▶ Problem size corresponds to number of kernels submitted

15 / 19



Throughput for sequential tasks on NVIDIA Titan X

29 210 211 212 213 214 215 216

Problem Size

0

1

2

3

4

5

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

BasParFor-hipSYCL
BasParFor-ComputeCpp

HierParFor-hipSYCL
HierParFor-ComputeCpp

NDRParFor-hipSYCL
NDRParFor-ComputeCPP

SinTask-hipSYCL
SinTask-ComputeCPP

▶ For sequential tasks, both implementations show very similar throughput
▶ Performance likely “as good as it gets”

16 / 19



Throughput for independent tasks on NVIDIA Titan X

29 210 211 212 213 214 215 216

Problem Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
E

xe
cu

tio
n

Ti
m

e
(S

ec
)

BasParFor-hipSYCL
BasParFor-ComputeCpp

HierParFor-hipSYCL
HierParFor-ComputeCpp

NDRParFor-hipSYCL
NDRParFor-ComputeCPP

SinTask-hipSYCL
SinTask-ComputeCPP

▶ hipSYCL showed higher independent task throughput on GPU vs ComputeCpp
▶ This problem stresses the scheduler of the SYCL runtime
▶ → probably lower scheduling overhead in hipSYCL

17 / 19



Throughput for independent tasks on Xeon E5-2699 v3

29 210 211 212 213 214 215 216

Problem Size

0

10

20

30

40

50

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

BasParFor-hipSYCL
BasParFor-ComputeCpp

HierParFor-hipSYCL
HierParFor-ComputeCpp

SinTask-hipSYCL
SinTask-ComputeCPP

▶ On CPU, ComputeCpp shows consistently higher task throughput
▶ Different CPU kernel execution mechanisms: hipSYCL (OpenMP) vs Intel OpenCL (ComputeCpp)
▶ (Note: hipSYCL single task does not go through OpenMP!)

18 / 19



The Last Slide

▶ SYCL-Bench: benchmark suite dedicated to SYCL benchmarking
▶ https://github.com/bcosenza/sycl-bench
▶ Focus on characterization of hardware and SYCL implementations
▶ Takes into account SYCL specifics (e.g. multiple kernel submission mechanisms)
▶ ndrange parallel for is not performance portable
▶ ComputeCpp PTX backend is mainly limited by runtime overheads
▶ Future: Add more benchmarks (e.g. more parallel patterns), expand supported SYCL

implementations

Acknowledgments: DFG project CELERITY CO 1544/1-1 and EPSRC fellowship EP/N018869/1

19 / 19


