
Improving Performance of OpenCL™ Workloads on
Intel® Processors with Profiling Tools
Michael R. Carroll
Intel Corporation

IWOCL – May, 2018 – Oxford, UK

An Introduction…

Agenda

• Value Proposition for Tuning and Profiling through OpenCL™

• Generalized Recommendations for Tuning

• Tooling Ecosystem

• Instrumentation results against example source transformations

• Follow up

2

Why performance tune for OpenCL™?/1

• OpenCL™ code is not performance portable.

• OpenCL™ compilers employ an even wider variety asm
transformations beyond classic x86 ecosystem. Low level
tuning may not be suitable for many developers.

• Some applications targeting lower power/small form
factor OpenCL™ [co]processors… become realtime with
tuning. Tuning can make or break the usability of your app!

Gen 9

CPU
core

CPU
core

CPU
core

CPU
core

6th Generation Intel® Core™ i7 (Skylake) Processor

3

Why performance tune for OpenCL™?/2

• Developer’s maximum impact comes from addressing obvious performance
bottlenecks low hanging high value fruit…

• Vendors provide advisories and heuristics for how to develop for our devices.

• Instrumented binaries and sampled performance counters allow developers to
review hotspots and architectural metrics. Apply best practices and verify their effect
with the aid of tools.

• Before we walk through details of profiling… let’s identify some generalized best
practices.

4

Generalized Primary Recommendations/1

Reduce memory bandwidth overhead. Be conscious of
your interdevice and intradevice memory access.

• clEnqueueWriteBuffer or clEnqueueMapBuffer? The
first can imply memcpy(…) (slow), the other implies
LLC style cache access (fast). Pick the right one for
your use case.

• On efficient memory access… We’ll revisit in the
subgroups instrumentation example.

SoC

Gen

CPU Core

LLC

Gen partition

Core partition

Slice

Slice

L3 Cache Fabric

Subslice SubsliceSubslice

Subslice SubsliceSubslice

partition partition partition

partition partition partition

So
C

Ri
ng

In

te
rc

on
ne

ct

L1 L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt
D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt

System Agent

DR
AM

Graphics Technology Interface

5

Generalized Primary Recommendations/2

Let the system flush your OpenCL™ queue.

• n single OpenCL™ API calls entering ring 0 may be more expensive than enqueueing
the n calls and having the runtime manage it.

• When you flush… you can still execute on the host!

6

Generalized Secondary Recommendations/4

Restrict!

• Just like classic x86… leverage restrict qualifier on pointers where applicable. Restrict
allows compilers to be more aggressive.

• Consider incorporating restrict into development expectations from the start.

__kernel void foo(__constant float* restrict a,
__constant float* restrict b,
__global float* restrict result)

{

…

}

7

Generalized Secondary Recommendations/5

Appeal to builtins

• Porting code from classic C or C++ won’t leverage builtins of OpenCL-C.

• We have vector types and related built ins, and math intrinsics in OpenCL-C that
aren’t provided out of the box many other places. Leverage the legacy of gfx
compute!

8

Generalized Secondary Recommendations/6

Float v int? 16b vs 32b vs 64b?

• Hardware with gfx legacy may benefit from using floats over ints for the same work.

• Write kernels with type defs upfront to play with operand types to see which gives
best performance.

• Gen9 has more compute b/w for floating point operations.

9

Generalized Secondary Recommendations/7

Avoid JIT compiling your kernels

On some devices, JITing kernels may be significantly expensive due to the nature of
getting execution code situated to the device.

• We’re primarily looking at Gen9 topology here, however FPGA’s may have a heavy
load time.

• For example, Intel® offers the ioc64 command line compiler tool within Intel® SDK for
OpenCL™ Applications

clCreateProgramWithBinary(…)

10

Generalized Secondary Recommendations/8

Kernel Compiler options

• Are you OK with a fuzzy epsilon and error propagation? Try building with relaxed
math toggles. Relaxed math can improve performance. A full roster of standard
options is available in the Khronos documentation. See the options definitions under:
• https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/clBuildProgram.html

11

Generalized Secondary Recommendations/9

Check out OpenCL™ extensions

• Vendors are incentivized to load die area with features. OpenCL™ is a great tool to
get to the special function features of a device via extensions. Extension source
transformations may bring you better performance.

• Extensions are registered and described at
https://www.khronos.org/registry/OpenCL/

cl_intel_accelerator
cl_intel_advanced_motion_estimation
cl_intel_d3d11_nv12_media_sharing
cl_intel_device_partition_by_names
cl_intel_device_side_avc_motion_estimation
cl_intel_driver_diagnostics
cl_intel_dx9_media_sharing

cl_intel_egl_image_yuv
cl_intel_media_block_io
cl_intel_motion_estimation
cl_intel_packed_yuv
cl_intel_planar_yuv
cl_intel_required_subgroup_size
cl_intel_simultaneous_sharing

cl_intel_subgroups
cl_intel_subgroups_short
cl_intel_thread_local_exec
cl_intel_va_api_media_sharing

12

Typical Profiler setup for Instrumentation tools
• Privileged HW registers are preprogrammed to report an event count for an event

manifest supplied by the user. Event definitions are provided on a per uArch basis.

• Tools can correlate counted events and timers with debugging symbols. In some
cases, some profiling modes induce time multiplexing… so give yourself a decently
long runtime.

• Tools may allow for remote connections. Remote connections limit impact to system
under test. The may instrument for a subsection of program functionality or time
slice.

13

Example Profiler setup for Instrumentation tools
• Our Vtune™ Example visualizes EUs behavior,

command queues, data transfer, OpenCL™ API
calls, low-level hardware metrics and much more.
It includes in-kernel profiling to identify source-
level hotspots in kernel programs.

• Don’t forget to turn OpenCL ™ queue profiling on:
• cl_queue_properties qprops[] = {

CL_QUEUE_PROPERTIES,

, 0

};

14

Example System Setup for our case studies

Centos 7.2 updated to patched Linux 4.4 kernel for i915 driver

OpenCL™ implementation provided via Intel® SRB5.0 package

Intel® Vtune™ Amplifier XE 2018 Update 2 (standalone)

Intel® Core™ i7-6770HW SkullCanyon NUC w/ Intel® Iris® Pro Graphics 580 (Skylake)

4C8T (SMT) 2.6Ghz base 3.6GHz Turbo

L1: 128KB I + 128KB D / core, L2: 1MB / core, L3: 6MB / chip, 16GB DDR4 SODIMM

Integrated: Intel® Iris® Pro Graphics 580: Gen9 u-Arch 350MHz base 950MHz turbo

 Fixed function available for general purpose compute:
 Texture Sampler
 Video Motion Estimation

 Tier: GT4e 9 subslices, 72 EUs, 7 threads per execution unit.
15

cl_intel_subgroups allows for more targeted granularity
for novel Intel® h/w. It’s a Khronos registered extension
that was demo’d in IWOCL’17. We’ve run this app
through default GPU hotspots Vtune™ profiling.

Before Transformation: GPU hotspots summary feedback

Profiling case 1) subgroups transformation

SoC

Gen

CPU Core

LLC

Gen partition

Core partition

Slice

Slice

L3 Cache Fabric

Subslice SubsliceSubslice

Subslice SubsliceSubslice

partition partition partition

partition partition partition

So
C

Ri
ng

In

te
rc

on
ne

ct

L1 L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt
D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt

System Agent

DR
AM

Graphics Technology Interface

16

‘subgroups’ before… ex: GUI summary page

17

Example Source Transformation: cl_intel_subgroups

Example host source reads bmp from disk, allocates space for input and output image.
The kernel performs simple copy to output. To demo, a basic time measurement is
taken around 10K loops of the NDRange kernel execution.

cl::ImageFormat format(CL_R, CL_UNSIGNED_INT8);
cl::Image2D outputImage(…); //Mapped
cl::Image2D inputImage(…); //Mapped
kernel.setArg(0, outputImage);
kernel.setArg(1, inputImage);
cl::NDRange globalSize(imageWidth / 4, imageHeight);
cl::NDRange localSize(32, 1);
for(unsigned i = 0; i < cmd.iterations.getValue(); i++)

{
queue.enqueueNDRangeKernel(…);

}
queue.finish();

18

Case 1) kernel before cl_intel_subgroups usage

__kernel void ImageCopy(write_only image2d_t dstImage, read_only image2d_t
srcImage)
{

int work_group_pixel_offset =
get_group_id(0) * get_enqueued_local_size(0) * 4;

int work_item_pixel_offset =
work_group_pixel_offset + get_local_id(0) * 4;

for(uint pixel = 0; pixel < 4; pixel++)
{

int2 coord = (int2)(
work_item_pixel_offset + pixel,
get_global_id(1));

uint4 color =

}
}

BEFORE!

19

Case 1) kernel after cl_intel_subgroups transformation

__kernel void ImageCopy(write_only image2d_t dstImage, read_only
image2d_t srcImage)
{

int work_group_byte_offset =
get_group_id(0) * get_enqueued_local_size(0) * 4;

int sub_group_byte_offset =
work_group_byte_offset +
get_sub_group_id() * get_max_sub_group_size() * 4;

int2 coord = (int2)(
sub_group_byte_offset,
get_global_id(1));

uint color =

}

20

We’ve reduced our L3 Bandwidth dependency and our
reliance on the sampler. This speaks to the notion that
the sampler should be used in spots, and L3 access can
be more costly vs EUs execution.

Profiling case 1) subgroups transformation

SoC

Gen

CPU Core

LLC

Gen partition

Core partition

Slice

Slice

L3 Cache Fabric

Subslice SubsliceSubslice

Subslice SubsliceSubslice

partition partition partition

partition partition partition

So
C

Ri
ng

In

te
rc

on
ne

ct

L1 L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt
D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt

System Agent

DR
AM

Graphics Technology Interface

SUBGROUPS Before After

Whole Program
Elapsed Time

15.5s 13.8s

GPU Usage 94% 94%

EU Array Stalled/Idle 56% 79%

GPU L3 Bandwidth
Bound

25% 14%

Sampler Busy 98% 0.5%
21

For more gains with subgroups:

• Dividing the global NDRange space by another factor of four: cl::NDRange
globalSize(imageWidth / 4, imageHeight / 4);

• use a 4 wide version of intel_sub_group_block_write4(dstImage,
coord, color);

To continue the introduction, let’s demonstrate profiling another OpenCL™
extension, cl_intel_planar_yuv by way of YUV->RGB colorspace conversion.

Next steps….

22

Media pipelines often involve conversion
from a Luma + Chroma format, like YUV 4:2:0,
to RGB – 8bit. This presents an memory
access challenge due to bad memory
localities. Such a layout is represented by the
example to the right.

The red overlays represent luma and chroma
image data that we may want to sample
together.

This is where the cl_intel_planar_uv
extension comes in.

Case 2) cl_intel_planar_yuv… concept
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y

U V U V

U V U V

U V U V

U V U V

Memory Layout

U V U V

U V U V

U V U V

U V U V
23

The extension sampling capability allows for kernels to more easily interpolate between
YUV planes to obtain the values. Our example kernel samples the three values, converts
to RGB, ships image data to host, then writes to disk.

Case 2) Before format converstion yuv to rgb

__kernel void nv12toRGB2Plane(, __global uchar *
out_rgb)
{

int x = get_global_id(0);
int y = get_global_id(1);
int w = get_global_size(0);
float4 sample_y =
float4 sample_uv =
float4 sample = (float4)(sample_uv.y, sample_y.x, sample_uv.x, 0.0f);
float3 frgb = (float3)(

(sample.y + 1.402f * (sample.x - 0.5f)),
(sample.y - 0.34414f * (sample.z - 0.5f) - 0.71414f * (sample.x - 0.5f)),
(sample.y + 1.77200f * (sample.z - 0.5f))

) * 255.0f;
uchar3 rgb = convert_uchar3(frgb);
int idx = (x + y * w)* 3;
out_rgb[idx] = rgb.x;
out_rgb[idx + 1] = rgb.y;
out_rgb[idx + 2] = rgb.z;

}

Write out
Convert

Sample

24

One sample into the image is needed; it’s an advantage for this OpenCL h/w.

Case 2) after format converstion yuv to rgb

__kernel void nv12toRGB(, __global uchar * out_rgb)
{

int x = get_global_id(0);
int y = get_global_id(1);
int w = get_global_size(0);
float4 sample =
float3 frgb =(float3)(

(yuv.y + 1.402f * (yuv.x - 0.5f)),
(yuv.y - 0.34414f * (yuv.z - 0.5f) - 0.71414f * (yuv.x - 0.5f)),
(yuv.y + 1.77200f * (yuv.z - 0.5f))

) * 255.0f;
uchar3 rgb = convert_uchar3(frgb);
int idx = (x + y * w)* 3;
out_rgb[idx] = rgb.x;
out_rgb[idx + 1] = rgb.y;
out_rgb[idx + 2] = rgb.z;

}

Write out

Convert

Sample

25

cl_intel_planar_yuv alleviates sampler bottleneck
decreasing overall execution time.

Profiling case 2) format conversion yuv->rgb

SoC

Gen

CPU Core

LLC

Gen partition

Core partition

Slice

Slice

L3 Cache Fabric

Subslice SubsliceSubslice

Subslice SubsliceSubslice

partition partition partition

partition partition partition

So
C

Ri
ng

In

te
rc

on
ne

ct

L1 L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2

Sampler
L1
L2D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt
D

at
a

Po
rt

D
at

a
Po

rt

D
at

a
Po

rt

System Agent

DR
AM

Graphics Technology Interface

PLANARUV Before After

Whole Program
Elapsed Time

9.1s 8.8s

GPU Usage 71% 76%

EU Array Stalled/Idle 64.2% 64.9%

GPU L3 Bandwidth
Bound

10% 11%

Sampler Busy 51% 53%

Sampler is
Bottleneck

1.2% 0.7%

26

Summary & Call to Action

• Even domain algorithm experts can attack low hanging fruit with the help of profilers.

• Metrics can be derived with the help of summary tools or scratchpad math.

• Not all OpenCL™ compute resources are optimal for the same task on varying
hardware. Texture samplers maybe scarce resources most suitable for use for specific
(spatial) access patterns.

• Please provide feedback on OpenCL™ forums for what’s useful out of performance
tuning workflows. Share your challenges encountered when profiling. All levels of
experience and expertise are welcome and provide mutual benefit. Link:
https://software.intel.com/en-us/forums/opencl

27

https://software.intel.com/en-us/forums/opencl

Thank you

My email: michael DOT r DOT carroll AT intel DOT com

See backup slides for links and references to related assets.

28

Legal Notice and Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect
actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information
about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the
property of others.

© 2018 Intel Corporation.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

29

http://www.intel.com/performance

Legal Disclaimer and Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

30

Intel® Technology

Backup

31

References:

For more in depth guidance on OpenCL ™ implementations and development on Intel ®
hardware:

Intel® SDK for OpenCL™ Applications - https://software.intel.com/en-us/intel-opencl

Intel® FPGA SDK for OpenCL™ - https://www.altera.com/products/design-
software/embedded-software-developers/opencl/

Linux getting started guide - https://software.intel.com/en-us/articles/sdk-for-opencl-
gsg

Classic: “SRB5.0” Intel® graphics OpenCL™ implementation -
https://software.intel.com/en-us/articles/opencl-drivers

New Implementation: “NEO” open source Intel graphics OpenCL™ implementation -
http://01.org/compute-runtime

32

https://www.altera.com/products/design-software/embedded-software-developers/opencl/
https://software.intel.com/en-us/articles/sdk-for-opencl-gsg
https://software.intel.com/en-us/articles/opencl-drivers
http://01.org/compute-runtime

References:

For more guidance on Intel® VTune™ Amplifier XE suite on Intel hardware:

• Landing page: https://software.intel.com/en-us/intel-vtune-amplifier-xe

• OpenCL™ Developer Guide for Intel® Processor Graphics - https://software.intel.com/en-us/iocl_opg
• Developer Guide performance checklist! - https://software.intel.com/en-us/node/540452

• Intel® VTune™ Amplifier XE: Getting started with OpenCL* performance analysis on Intel® HD Graphics
2014, Julia Fedorova. https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-getting-
started-with-opencl-performance-analysis-on-intel-hd-graphics

• Propel with OpenCL - A Deep Dive Workshop to Create, Debug, Analyze and Optimize OpenCL
Applications using Intel Tools, IWOCL ’15 Banerjee, Fedorova, Levy, Kurylev, Sharma, Stoner, Ioffe

• The Compute Architecture of Intel Processor Graphics “Gen9” -
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-
Processor-Graphics-Gen9-v1d0.pdf

33

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/iocl_opg
https://software.intel.com/en-us/node/540452
https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-getting-started-with-opencl-performance-analysis-on-intel-hd-graphics
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

Vtune™ bring up/1

Windows 10:

• For CPU target:
• Execute your application through the Intel® VTune™ Amplifier XE GUI front end or from the

command line interface. SSE2 Intel® Pentium™ 4 or newer processor.

• For GPU target:
• 5th generation Intel® Core™ processor or newer (Broadwell) with Gen9 graphics.

• The Intel® OpenCL™ runtime is included in the Windows graphics driver package available
from system vendor or from https://downloadcenter.intel.com/.

• Developers can look to install Intel® SDK for OpenCL™ Applications package for headers to
build for windows target.

• Execute your application through the Intel® VTune™ Amplifier XE GUI front end or from the
command line interface.

34

https://downloadcenter.intel.com/

Vtune™ bring up/2
Linux:

• For CPU target:

• Execute your application through the Intel® VTune™ Amplifier XE GUI front end or from the command line interface. SSE2 instruction set, Intel®
Pentium™ 4 or newer processor.

• For GPU target:

• 5th generation Intel® Core™ processor or newer (Broadwell).

• The Intel® OpenCL™ runtime is either:
• From the “SRB5.0” package
• Or the Intel® compute runtime “NEO” package.

• Install Intel® SDK for OpenCL™ Applications package for headers and libraries to build and for instrumentation.

• Centos 7.3 or newer
• Linux 4.4 w/ Intel® provided kernel patches (SRB5.0) or Linux 4.14 (NEO)
• kernels need CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y and CONFIG_EXPERT=y turned on.
• Libmd dependency from here https://github.com/intel/metrics-discovery.
• Turn profiling enablement on during command queue setup in src via command queue properties.
• May function with other Linux distros provided correct Linux kernel. (Ubuntu)
• See the getting started guide for more info.

• https://software.intel.com/en-us/articles/sdk-for-opencl-gsg

• Forums: https://software.intel.com/en-us/forums/opencl

35

https://github.com/intel/metrics-discovery
https://software.intel.com/en-us/articles/sdk-for-opencl-gsg
https://software.intel.com/en-us/forums/opencl

Misc References:

• Extension registry:
• https://www.khronos.org/registry/OpenCL/

• GPU Metrics reference (definitions for composite metrics):
• https://software.intel.com/en-us/vtune-amplifier-help-gpu-metrics-reference

• See https://ark.intel.com to look up capabilities for various Intel processors

36

https://www.khronos.org/registry/OpenCL/
https://software.intel.com/en-us/vtune-amplifier-help-gpu-metrics-reference
https://ark.intel.com/

‘subgroups’ after gui example…

37

Acknowledgements

Adam Herr

Jeffrey McAllister

Ben Ashbaugh

Julia Fedorova

Jon Webb (SCEA)

38

	Improving Performance of OpenCL™ Workloads on Intel® Processors with Profiling Tools
	Agenda
	Why performance tune for OpenCL™?/1
	Why performance tune for OpenCL™?/2
	Generalized Primary Recommendations/1
	Generalized Primary Recommendations/2
	Generalized Secondary Recommendations/4
	Generalized Secondary Recommendations/5
	Generalized Secondary Recommendations/6
	Generalized Secondary Recommendations/7
	Generalized Secondary Recommendations/8
	Generalized Secondary Recommendations/9
	Typical Profiler setup for Instrumentation tools
	Example Profiler setup for Instrumentation tools
	Example System Setup for our case studies
	Profiling case 1) subgroups transformation
	‘subgroups’ before… ex: GUI summary page
	Example Source Transformation: cl_intel_subgroups
	Case 1) kernel before cl_intel_subgroups usage
	Case 1) kernel after cl_intel_subgroups transformation
	Profiling case 1) subgroups transformation
	Next steps….
	Case 2) cl_intel_planar_yuv… concept
	Case 2) Before format converstion yuv to rgb
	Case 2) after format converstion yuv to rgb
	Profiling case 2) format conversion yuv->rgb
	Summary & Call to Action
	Thank you
	Legal Notice and Disclaimers
	Legal Disclaimer and Optimization Notice
	Backup
	References:
	References:
	Vtune™ bring up/1
	Vtune™ bring up/2
	Misc References:
	‘subgroups’ after gui example…
	Acknowledgements
	Slide Number 39

