

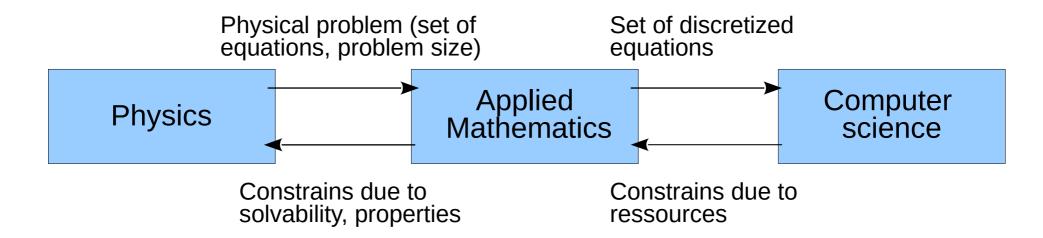
K. Ostaszewski, P. Heinisch, H. Ranocha

Computational Physics

- Very few physical problems can be solved analytically due to
 - Complexity,
 - Lack of algebraic solvability.
- Numerical approximations are required.
- Fields of application:
 - <u>Plasmaphysics</u> (Fusion, Astrophysics, industrial plasmas),
 - Weather prediction,
 - Solid state physics, etc.

Computational Physics

Overlap of physics, applied mathematics and computer science.



Different fields constrain eather other.

Motivation

 Legacy Plasmacode (A.I.K.E.F) used for different NASA/ESA missions.

- Parallelized with MPI (CPU based).
- Limits in scalability and ressources reached.

Plasmaphysics

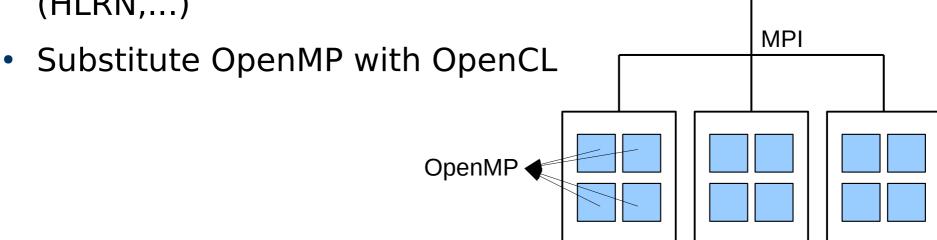
- Different models to describe a plasma: Fluid-Model, Hybrid-Model, Particle-in-Cell (PiC).
- Need to describe particles and electromagnetic fields.

Hybrid-Model includes the following mathematical problems:

- Systems of linear equations,
- Ordinary/partial differential equations,
- N-Body interactions.

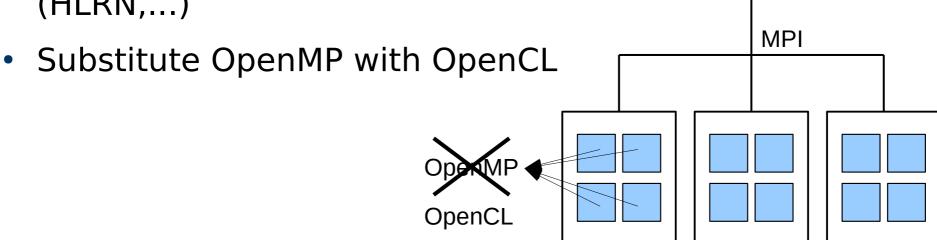
Simulation Approach

- Usual approach is to combine a global inter-node based MPI parallelization with a local OpenMP parallelization.
- Developed for deployment on clusters (HLRN,...)



Simulation Approach

- Usual approach is to combine a global inter-node based MPI parallelization with a local OpenMP parallelization.
- Developed for deployment on clusters (HLRN,...)



Advantages and pitfalls

Advantages of OpenCL

 Deployment on heterogenous systems (portability),

Runtime advantage by using GPUs,

 Easy testing/changing of numerical submodules (Python, Oclgrind, MatCL),

Advantages and pitfalls

Advantages of OpenCL

 Deployment on heterogenous systems (portability).

```
convec.x = d field b old[idx].x*(d field u[increment x(idx,1)].x - d field u[increment x(idx,-1)].x)/((2.0f*(REAL)DX))
           +d field b old[idx].y*(d field u[increment y(idx,1)].x - d field u[increment y(idx,-1)].x)/((2.0f*(REAL)DY))
           -0.5*d field b old[idx].x*((d field u[increment x(idx,1)].x - d field u[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
           +(d field u[increment y(idx,1)].y - d field u[increment y(idx,-1)].y)/((2.0f*(REAL)DY)))
           -0.5*(d field u[idx].x*(d field b old[increment x(idx,1)].x - d field b old[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
           +d field u[idx].y*(d field b old[increment y(idx,1)].x - d field b old[increment y(idx,-1)].x)/(2.0f*(REAL)DY))
           -0.5*((d field u[increment x(idx,1)].x*d field b old[increment x(idx,1)].x
           -d field u[increment x(idx,-1)].x*d field b old[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
          +(d field u[increment y(idx,1)].y*d field b old[increment y(idx,1)].x
           -d field u[increment y(idx,-1)].y*d field b old[increment y(idx,-1)].x)/(2.0f*(REAL)DY));
convec.y = d field b old[idx].x*(d field u[increment x(idx,1)].y - d field u[increment x(idx,-1)].y)/((2.0f*(REAL)DX))
          +d field b old[idx].y*(d field u[increment y(idx,1)].y - d field u[increment y(idx,-1)].y)/((2.0f*(REAL)DY))
          -0.5*d field b old[idx].y*((d field u[increment x(idx,1)].x - d field u[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
          +(d field u[increment y(idx,1)].y - d field u[increment y(idx,-1)].y)/((2.0f*(REAL)DY)))
          -0.5*(d field u[idx].x*(d field b old[increment x(idx,1)].y - d field b old[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
          +d field u[idx].y*(d field b old[increment y(idx,1)].y - d field b old[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
          -0.5*((d field u[increment x(idx,1)].x*d field b old[increment x(idx,1)].y
          -d field u[increment x(idx,-1)].x*d field b old[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
          +(d field u[increment y(idx,1)].y*d field b old[increment y(idx,1)].y
          -d field u[increment y(idx,-1)].y*d field b old[increment y(idx,-1)].y)/(2.0f*(REAL)DY));
```

Advantages and pitfalls

Pitfalls of OpenCL

Copy overhead serious bottleneck,

 Lack of debugging capability (e.g. no buffer overflow check),

Documentation/examples lacking.

Partial Differential Equations

 Most simulation codes involve solving of differential equations on a discretized grid:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

- Discretization schema influences physical properties of solution.
 - Trade of between accuracy and computational cost!

Example: Partial Differential Equations

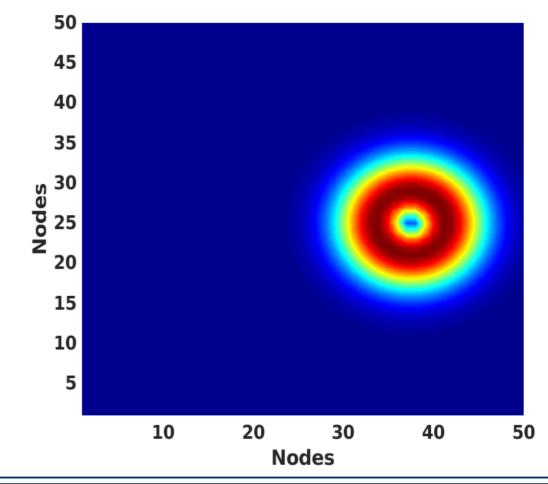
Example: Frozen-in-Theorem

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{u} \times \vec{B})$$

B: Magnetic field

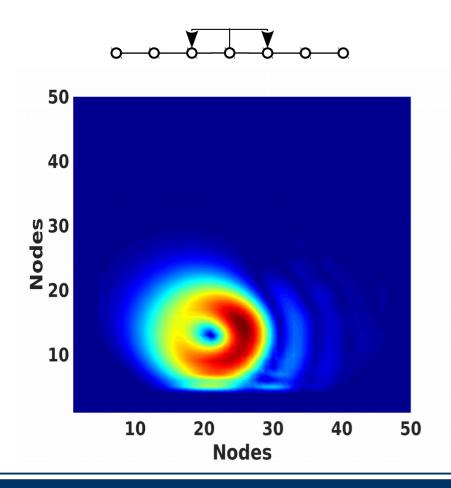
u: Fluid velocity

 Solution will rotate around middle of the box.

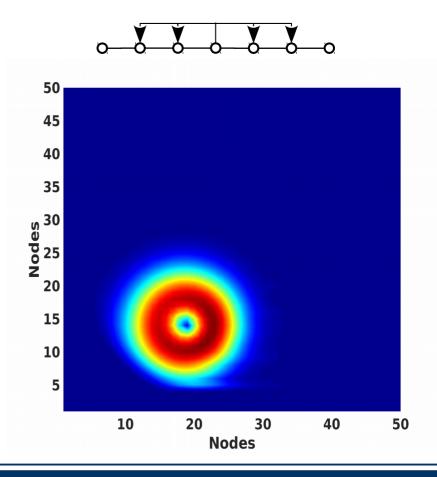


Example: Partial Differential Equations

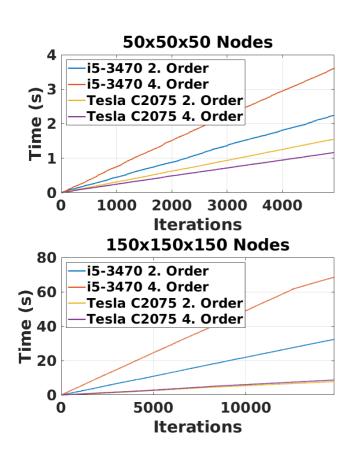
Solver 2nd Order

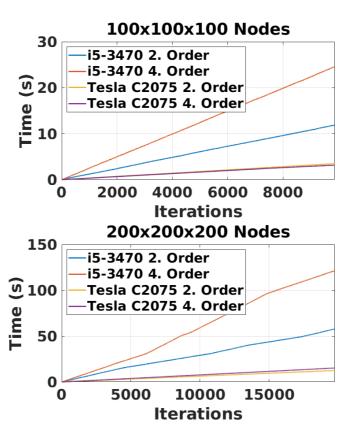


Solver 4th Order



Example: Partial Differential Equations

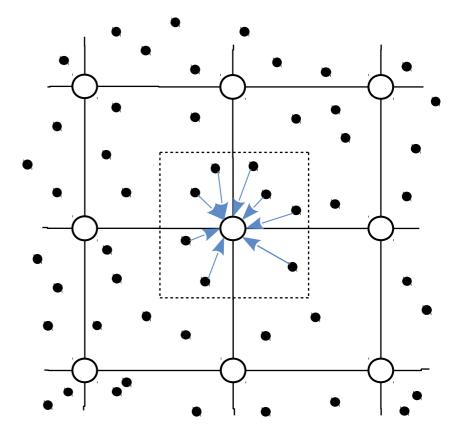




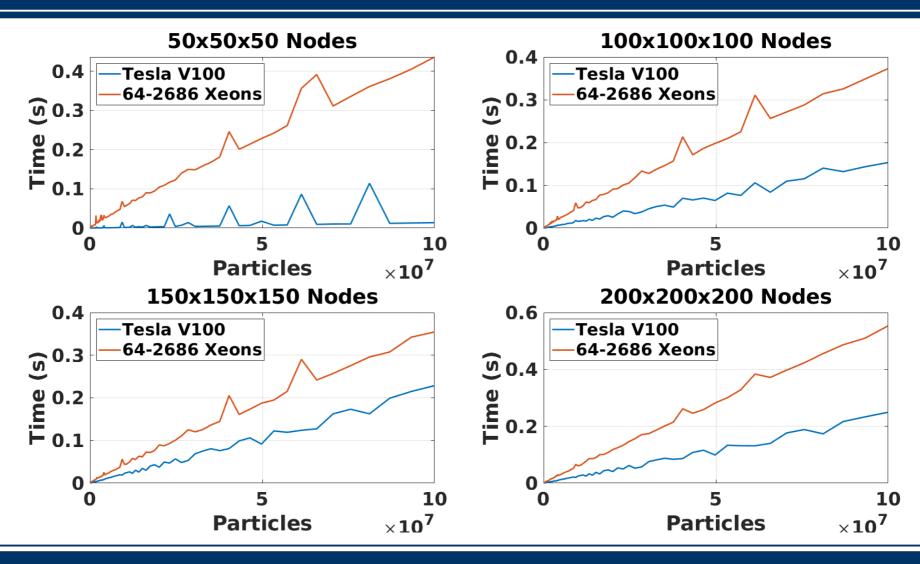
Number of Nodes	Performance penalty
	GPU CPU
50x50x50	0.78 1.63
100x100x 100	0.95 2.04
150x150x 150	1.11 2.23
200x200x 200	1.21 1.89

Particle to Grid Reduction

- Sum up all particle on next node.
- Needed to describe the interaction between electromagnetic fields and particles.
- Naive approach: add up all particles using atomics.



Particle to Grid Reduction



Particle to Grid Reduction

Problem also encountered in gravitational N-Body simulations.

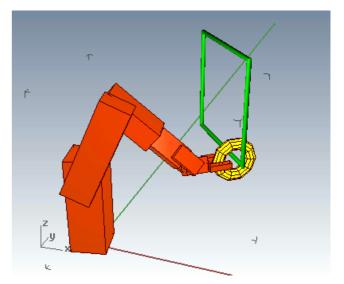
 Solution available, but they depend on GPU architecture → loss of portability.

Conclusion

- OpenCL offers many advantages in computational science.
 - deployment on heterogenous systems,
 - seperation between "physics" and (architecture dependent) host code.
- But it is difficult getting started:
 - lack of documentation/examples,
 - limited debug possibilites.

Systems of linear Equations

- Systems of linear equations are used in:
 - solving of implicit differential equations,
 - inverse kinematics,
 - computer vision (OpenCV).
- Common methods:
 - Gauß-Seidel-Methods (SOR,...),
 - Conjugate Gradient Method (CG),
 - Cholesky-Method.



System of linear Equations

