
KOCL:
Kernel-level Power Estimation for Arbitrary 
FPGA-SoC-accelerated OpenCL Applications

James Davis, Josh Levine, Ed Stott, Eddie Hung, 

Peter Cheung and George Constantinides

Imperial College London

james.davis@imperial.ac.uk



Executive Summary

• KAPow for OpenCL

– ‘K’ounting Activity for Power Estimation

• Hardware/software framework providing kernel-level power 

estimates for OpenCL applications running on Altera FPGAs

• Trains, adapts online with real workload

• Up to ±5mW accuracy

• Fully automated

• Minimalist API

• Open source

– https://github.com/PRiME-project/KOCL

2



Shameless Self Promotion

Introduced in
IEEE D&T 34(6)

3



Use Cases

• Hardware prototyping, design iteration

• Adaptive system deployment

– Power-aware kernel selection

– Fine-grained DVFS, clock gating, …

• Fault, malware detection

• Billing

• ...

4



KAPow

• Hardware/software framework providing power breakdowns for 

arbitrary FPGA-based systems at user-specified granularity

5



KAPow

• Hardware/software framework providing power breakdowns for 

arbitrary FPGA-based systems at user-specified granularity

• Monitoring of switching activities

– Power-indicative signals selected

• Online modelling

– Compensates for changes in environment, workload

• System power measurements split by module

6



KAPow: Further Reading

Introduced at
IEEE FCCM’16
(Best Paper)

7



KAPow: Further Reading

Introduced at
IEEE FCCM’16
(Best Paper)

Extended in
ACM TRETS

11(1)

8



Motivation

• Have existing fine-grained power estimation framework…

• … but it requires HDL expertise

• “Hardware is hard” – can we hide it?

9



Motivation

• Have existing fine-grained power estimation framework…

• … but it requires HDL expertise

• “Hardware is hard” – can we hide it?

• Aims:

– Generality

– Minimal user effort

– Transparency

– Low overheads

10



OpenCL for FPGAs

• Adopted as input language by Altera, Xilinx

• Front-ends to existing vendor tools

– High-level synthesis

– System integration

– Mapping, placement, routing, …

• Kernel code compiled offline…

– 1 kernel = 1 hardware accelerator

• … and stitched to supporting infrastructure

– Global memory interfacing

– Launching kernels

11



Developer Burden: Hardware

12



Developer Burden: Hardware

• Before:

./aoc <.cl file> --board <board name>

• After:

./koc <.cl file> --board <board name>

13



Developer Burden: Hardware

• Before:

./aoc <.cl file> --board <board name>

• After:

./koc <.cl file> --board <board name>

• Optional flags:

– kernels Choose a subset of kernels to monitor

– kapow_n

– kapow_w
 Control fidelity of measurements

14



Developer Burden: Software

• Initialise:

#include "KOCL.h"

KOCL_init(float <update period>);

– Controls reactiveness of power model

• Use:

KOCL_built();

KOCL_get(char* <kernel name>);

KOCL_get("static");

• Clean up:

KOCL_del();

15



Vanilla Tool Flow

16

High-level synthesis,
system integration

Mapping, placement, routing, …



KOCL Tool Flow

17



KOCL Tool Flow: HDL

• Per kernel:

– Compile  netlist

• Specifies use of FPGA

resources

– Perform power simulation to

obtain switching estimates

• Fast

• No user input

– Augment 𝑁 most-switching

signals with 𝑊-bit activity

counters

– Substitute for original HDL

18



KOCL Tool Flow: Interfacing 1

• Expose busses to allow counter

control, readback

19



KOCL Tool Flow: Control

• Per kernel:

– Add controller

– Connect to counters in

netlist

– Parameterise with hash

of kernel’s name

20



KOCL Tool Flow: Interfacing 2 

• Connect controllers

21



KOCL Tool Flow: TTL

• Need to determine optimal

measurement period

– Too small: low dynamic range

– Too large: potential overflow

• Read 𝑓max from compilation

report

• Given 𝑓max, 𝑊, calculate TTL

• Apply via controller ROMs

22



KOCL Software

• Launched by, runs alongside host code

• Python w/Numpy, C API

23



KOCL Software

• Launched by, runs alongside host code

• Python w/Numpy, C API

• Three threads:

– Model

• Talks to hardware

• Performs power modelling

– Interface

• Responds to host code requests

– Messenger

• Model-interface communication

24



KOCL Software: Model

• Initialisation:

– Establish kernel names from bitstream

– Discover controllers in hardware

– Match to kernel names using hashes

– Read parameters (𝑁, 𝑊) from controllers

– Construct model

25



KOCL Software: Model

• Initialisation:

– Establish kernel names from bitstream

– Discover controllers in hardware

– Match to kernel names using hashes

– Read parameters (𝑁, 𝑊) from controllers

– Construct model

• Every update_period:

– Get activity, system power measurements

– Update model

– Pass power breakdown to messenger

26



Results

• Things of interest:

– Accuracy

• Estimate vs measurement

– Compilation time overhead

– Area overhead

– Power overhead

– Max. model update rate

27



Results

• Things of interest:

– Accuracy

• Estimate vs measurement

– Compilation time overhead

– Area overhead

– Power overhead

– Max. model update rate

• Particularly dependent on choice of 𝑁

• Found 𝑊 = 9 generally best accuracy-overhead compromise

28



Accuracy

29



Compilation Overheads

30



Runtime Overheads

31



Further Work

• Improved signal selection

• Incorporation of macro modelling

• Use for system-level control

• More devices, vendors

• Similar tools for monitoring performance, reliability

32



Preliminary Improvements

Signal selection
improved in

FPL’17

33



Preliminary Improvements

Signal selection
improved in

FPL’17

Extension
in the works…

34



Summary

• Framework providing kernel-level power estimates of arbitrary 

OpenCL systems executing on Altera FPGAs to host code

• Easy to use

– No hardware exposure

• ≥ order-of-magnitude accuracy improvement vs simulation

• Remains under active development

35



Summary

• Framework providing kernel-level power estimates of arbitrary 

OpenCL systems executing on Altera FPGAs to host code

• Easy to use

– No hardware exposure

• ≥ order-of-magnitude accuracy improvement vs simulation

• Remains under active development

• Open source

– https://github.com/PRiME-project/KOCL

– Plug-and-play Linux image, demo apps included

• Please use and provide feedback!
36



37

Backup



KAPow: Monitoring

• Modules analysed to identify power-indicative signals

• Lightweight activity counters transparently inserted

38



KAPow: Modelling

• Activities + system power module-level power

• Online training, refinement

– Adapts to changes in voltage, temperature, workload, noise, …

39


