
Michael Kinsner, Dirk Seynhaeve

IWOCL 2018

2

Topics

1. FPGA overview

2. Motivating application classes

3. Host pipes

4. Some data

FPGA: Fine-grained Massive Parallelism

3

Intel® Stratix® 10 FPGA:
Over 5 Million Basic Elements!

4

https://www.altera.com/products/design-software/overview.html

Many Design Entry Options

OpenCL defines the full system
(e.g. host, memory hierarchy, host  device communication)

How Can You Compile Software to Hardware?

5

add:
R0  Load Mem[100]
R1  Load Mem[101]
R2  Load #42
R2 Mul R1, R2
R0  Add R2, R0
Store R0 Mem[100]

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

OpenCL™ Code

Instruction Level

 Instruction sequence can either be executed sequentially in time
(temporal computing), or executed in parallel in space (spatial computing)

Executing in Time vs.
Executing in Space

6

B

A

A
ALU

Op

V
al

Instruction

Registers

PC Load Store

C

Op

B

A

A

V
al

Instruction

Registers

Load Store

C

Op

B

A

A
Aaddr

Baddr

Caddr

Store

Val

Instruction

Fetch

Registers

Load

LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0Mem[100]

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2 Mul R1, R2

R0  Add R2, R0

Store R0 Mem[100]

A

A

A

A

A

A

A

A

A

A

A

A

load load

store

42

Execute in Time
CPU, GPU

Execute in Space
FPGA

R0  Load Mem[100]
R1  Load Mem[101]
R2  Load #42
R2 Mul R1, R2
R0  Add R2, R0
Store R0 Mem[100]

Fine grained
pipeline parallelism

Conceptually map to regions of the FPGA in Intel’s OpenCL implementation

▪ Pipeline, data, and task parallelism

▪ Efficient use of FPGA architecture

▪ “Concurrent execution”

Kernels consume “space”

7

Programming
image

1

2

▪ Data flow processing

▪ Fine grained on-chip communication

OpenCL 1.x – Host/Device Bulk Communication

8

Global
Memory

FPGA

Host system

CPU

GPU

Prepare input data clEnqueueWriteBuffer Kernel execution clEnqueueReadBuffer Use output data
or clEnqueueUnmapMemObject() or clEnqueueMapBuffer()

OpenCL Synchronization Point

Prepare input data clEnqueueWriteBuffer Kernel execution clEnqueueReadBuffer Use output data

Prepare input data clEnqueueWriteBuffer Kernel execution clEnqueueReadBuffer Use output data

Prepare input data clEnqueueWriteBuffer Kernel execution clEnqueueReadBuffer Use output data

Latency

9

Long Running Kernel for Bursting or Massive Data

10

Long running / persistent kernel

1

2

Host system

CPU

• Processing more data than
fits in global memory, using a
single kernel instance
• Or for lower latency

processing of data arriving
piecemeal on host

• Reduced latency processing
of bursting data
• Avoid launch overhead and

state reconstruction

Prepare input data

Stream to device

Kernel

Stream from device

Analyze output data

Latency

Routing table updates – low rate, non-periodic

Network Routing / Processing

11

Host system

CPU FPGA

Network Data

Network Data

Routing table
updates • FPGAs have rich I/Os

• Often want long-running
kernels

• Polling for memory-based
host updates expensive
• Plus memory consistency

challenges

• FIFO semantics ideal

Streaming Content Analysis

12

Low rate, non-periodic detection events signaled to host

Host system

CPU
FPGA

Network Data

Network Data

Detection
events

• Rich I/Os
• Long running kernels

• Data consistency
challenges

• FIFO semantics ideal

Two Use Models

13

High throughput streaming Asynchronous signaling/control

Host system

CPU FPGA

Host system

CPU FPGA

Two Use Models – OpenCL 1.x Challenges

14

Host system

CPU FPGA

Host system

CPU FPGA

• Data availability
• Cost of memory polling

• Data availability
• FIFO model

• Data availability
• Cost of memory polling
• FIFO model

OpenCL 2.0 Pipes – A Reminder

15

kernel void producer (write_only pipe uint c0) {

for (uint i=0;i<10;i++) {

write_pipe(c0, &i);

}

}

kernel void consumer (read_only pipe uint c0, global uint * restrict dst) {

for (int i=0;i<5;i++) {

read_pipe(c0, &dst[i]);

}

}

Kernels

...

cl_mem pipe = clCreatePipe(context, 0, sizeof(cl_int), SIZE, NULL, &status);

status = clSetKernelArg(producer, 0, sizeof(cl_mem), &pipe);

status = clSetKernelArg(consumer, 0, sizeof(cl_mem), &out_buffer);

status = clSetKernelArg(consumer, 1, sizeof(cl_mem), &pipe);

...

Host

OpenCL 2.0 pipes: Communication is between kernels

16

Allow pipes to be read/written from the host program as well as in kernels

Host system

CPU FPGA

Host Pipe Extension

Small extension to OpenCL 2.x pipe API: cl_intel_fpga_host_pipe

• New flags legal in clCreatePipe():

17

cl_mem read_pipe = clCreatePipe(

context,

CL_MEM_HOST_READ_ONLY,

sizeof(cl_int),

128, // Number of packets that can be buffered

NULL,

&error

);

CL_MEM_HOST_READ_ONLY

CL_MEM_HOST_WRITE_ONLY

CL_MEM_READ_ONLY

CL_MEM_WRITE_ONLY

Set host
visibility

Optional –
From device
perspective

Host program:

API Enum Parent Function

CL_KERNEL_ARG_HOST_ACCESSIBLE_PIPE_INTEL clGetKernelArgInfo()

CL_DEVICE_MAX_HOST_READ_PIPES_INTEL clGetDeviceInfo()

CL_DEVICE_MAX_HOST_WRITE_PIPES_INTEL clGetDeviceInfo()

CL_PIPE_FULL clWritePipeIntelFPGA()

CL_PIPE_EMPTY clReadPipeIntelFPGA()

• New query / status enums:

Kernel Interface

18

kernel void foo (__attribute__((intel_host_accessible)) write_only pipe int p) { }
read_pipe(P, &val)

write_pipe(P, &val)

kernel void foo([[cl::intel_host_accessible]] cl::pipe<int, cl::pipe_access::write> p) { }

p.write(val)

p.read(&val)

C kernel language:

C++ kernel language:

Used like normal OpenCL 2.x pipes

▪ Additional kernel argument attribute

▪ No reservation functionality (the OpenCL 2.x feature)

Simple interface

▪ Single word read/write

▪ Data transferred “as soon as possible”

Host Interface – Low Rate Signaling

19

cl_int clReadPipeIntelFPGA(cl_mem pipe, void *ptr);

cl_int clWritePipeIntelFPGA(cl_mem pipe, const void *ptr);

// Create pipes, kernels, other startup code

....

// Bind pipes to kernels

clSetKernelArg(read_kern, 0, sizeof(cl_mem), (void *)&write_pipe);

clSetKernelArg(write_kern, 0, sizeof(cl_mem), (void *)&read_pipe);

// Enqueue kernels

....

int float2;

if (!clReadPipeIntelFPGA(read_pipe, &val)) {

int result = clWritePipeIntelFPGA(write_pipe, (int)(val.x + val.y));

// Check write success/failure and handle

....

}

Host Interface – High Throughput

20

void * clMapHostPipeIntelFPGA(
cl_mem pipe,
cl_map_flags map_flags,
size_t requested_size,
size_t * mapped_size,
cl_int * errcode_ret);

cl_int clUnmapHostPipeIntelFPGA(
cl_mem pipe,
void * mapped_ptr,
size_t requested_size,
size_t * unmapped_size);

…

cl_int *buffer;

buffer = (cl_int*) clMapHostPipeIntelFPGA(pipe, 0, ask_size, &got_size, &status);

// Write data to buffer

…

clUnmapHostPipeIntelFPGA(pipe, buffer, buffer_size, NULL);

Host system

CPU FPGA

What you want

What you got

What you want

What you got

FIFO Access Within Kernels

21

Checking FIFO for data availability is cheap

▪ Implicit control signals (ready/full), and low latency

kernel void

foo (global int *G, …) {

if (G[get_local_id(0)]) { … }

}

kernel void

foo (read_only pipe int4 P …) {

int4 val;

if (0 == read_pipe(P, &val)) { … }

} local_id G

load

?

?

Data

Full

Data

!Empty

Visibility and Latency

22

Additional memory model guarantee
▪ Data written to a pipe will eventually be visible on the read endpoint, without an OpenCL synchronization point. It is

understood that an OpenCL implementation will make the data visible to the read endpoint “as soon as possible”

▪ No synchronization side effects with other pipes or memory

The host pipe API supports low latency communication
▪ An OpenCL extension is not enough to guarantee latency

– Board support package

– Drivers/OS

– System load

▪ The host pipe API was designed to enable latency-sensitive applications

– Talk to board and system provider if guarantees are required

Host
system

CPU FPGA

Host Pipe Microbenchmark

23

▪ Results from an Intel® Arria® 10 GX FPGA Development Kit
– https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

▪ Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz

▪ Two CPU threads, each managing one host pipe direction. Loopback kernel

▪ ‘aocl diagnose’: Buffer transfer speed benchmark, that ships with the Intel® FPGA SDK for OpenCL™

0

2

4

6

8

10

12

14

16

18

4 8 16 32 64 128 256

F
u

ll
 d

u
p

le
x

sp
e

e
d

 [
G

B
/s

]
(s

u
m

 t
x

a
n

d
 r

x)

Map size [KB]

Host pipe microbenchmark

Theoretical link (no protocol)

Host pipe loopback

Buffer xfer bench peak
(aocl diagnose)

Host pipes require platform (BSP) support

https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

Now Available!

24

Host pipes are shipping in the Intel® FPGA SDK for OpenCL™ 18.0

▪ Reference platform has some minor restrictions that will be relaxed in the future

– # host pipes, width of host pipes

– Some queries

▪ https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

Legal Notice and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

© 2018 Intel Corporation.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

* Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

27

