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Motivation 
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Great performance comes from deep understanding of 

hardware architecture, compiler, and the algorithm. 

 

Compiler tools must educate the user about the underlying 

architecture and how user’s algorithm fits onto it. 

 

 

How differences in FPGA architecture lead to  

differences in OpenCL FPGA compiler tools. 



Talk Overview 
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How are FPGAs different from other architectures? 
1. Computation in Space versus Time 

2. Importance of Area 

3. Loop Pipelining 

4. Local Memory Flexibility 

5. (other ways we’re not going to cover here) 

 

Altera SDK for OpenCL Tools that deal with these 

concepts. 

 



1. Computation in Space 
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A simple 3-address CPU 
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Load memory value into register 
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Add two registers, store result in register 
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A simple program 

Mem[100] += 42 * Mem[101] 

 

CPU instructions: 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

 



CPU activity, step by step 
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Unroll the CPU hardware… 
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… and specialize by position 
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… and specialize 
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… and specialize 
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… and specialize 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

 



… and specialize 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

5. Remove dead data. 

 



Optimize the Datapath 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

5. Remove dead data. 

6. Reschedule! 

 



Data parallel kernel 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

float *a = 

float *b = 

float *answer = 

0 1 2 3 4 5 6 7 

7 6 5 4 3 2 1 0 

7 7 7 7 7 7 7 7 

__kernel void sum( … ); 



Example Datapath for Vector Add 

On each cycle the portions of the 

datapath are processing different 

threads 

While thread 2 is being loaded, 

thread 1 is being added, and thread 

0 is being stored 
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Example Datapath for Vector Add 
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Example Datapath for Vector Add 

On each cycle the portions of the 

datapath are processing different 

threads 

While thread 2 is being loaded, 

thread 1 is being added, and thread 
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How does my pipeline look like, 

how well is it performing, 

and are its bottlenecks? 
 

 



2. Area 
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Area 
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FPGA area is multi-dimensional: 
 Registers 

 Look-Up Tables (LUTs) 

 On-chip RAM blocks 

 Dedicated Signal Processing (DSP) blocks 

 

Each FPGA model provides a different mix of these four 

types of resources. 

 

Each design demands a different mix of these four types. 

 



Importance of Area 
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Area on an FPGA is major concern: 
 Higher area  fewer kernels per chip 

 Higher area  no-fit 

 Higher area  more expensive chip 

 Higher area  higher dynamic power 

 

 

 

How much area does a kernel use 

and where does it go? 

 



Area Report Detail 
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For area report to be actionable, it must be done on a sub-line level. 

 

float_cache[li] = global_int_data[gi+i]; 

 

Operations that consume area from the line above: 

 

float_cache[li] =   // Store to local memory 

   (float)    // Implicit int-to-float conversion 

      global_int_data[  ] // Global load 

   gi+i  // Integer addition 

 

 



3. Loop Pipelining 
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Data-Parallel Execution 
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On the FPGA, we use pipeline parallelism to achieve 

acceleration 

 

 

 

 

 

 

 

Threads execute in an embarrassingly parallel manner. 

Ideally, all parts of the pipeline are active at the same time. 

kernel void 
sum(global const float *a, 
    global const float *b, 
    global float *c) 
{ 
  int xid = get_global_id(0); 
  c[xid] = a[xid] + b[xid]; 
} 

Load Load 

Store 

+ 
0 

1 

2 



Data-Parallel Execution - drawbacks 
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Difficult to express programs which have partial 

dependencies during execution 

 

 

 

 

 

 

 

Would require complicated hardware and new language 

semantics to describe the desired behavior 

 

 

 

 

Load Load 

Store 

+ 
0 

1 

2 kernel void 
sum(global const float *a, 
    global const float *b, 
    global float *c) 
{ 
  int xid = get_global_id(0); 
  c[xid] = c[xid-1] + b[xid]; 
} 



Solution: Tasks and Loop-pipelining 
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Allow users to express programs as a single-thread 

 

 

 

Pipeline parallelism still leveraged to efficiently execute 

loops in Altera’s OpenCL 
 Parallel execution inferred 

by compiler 

 Loop Pipelining 

 

Load 

Store 

+ 

for (int i=1; i < n; i++) { 
  c[i] = c[i-1] + b[i]; 
} 

i=0 

i=1 

i=2 



Loop Pipelining Example 
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No Loop Pipelining 
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No Overlap of Iterations! 
Finishes Faster because Iterations 

Are Overlapped 
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Looks almost 

like multi-

threaded 

execution! 

With Loop Pipelining 

Loop Pipelining enables Pipeline Parallelism AND the 

communication of state information between iterations. 



Parallel Threads vs. Loop Pipelining 
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So what’s the difference NDRange and loop pipelining? 

 

 

 

 

 

 

 

Parallel threads 

launch 1 thread per 

clock cycle in 

pipelined fashion 

Sometimes 

loop iterations 

cannot be 

started every 

cycle. 
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Loop-Carried Dependencies 
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Loop-carried dependencies are dependencies where one 

iteration of the loop depends upon the results of another 

iteration of the loop 

 

 

 

 

 

 

 
The variable state in iteration 1 depends on the value from iteration 0.  

Similarly, iteration 2 depends on the value from iteration 1, etc. 

kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    write_output(y); 
  } 
} 



Loop-Carried Dependencies 
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To achieve acceleration, we pipeline each iteration of a 

loop with loop-carried dependencies 
 Analyze any dependencies between iterations 

 Schedule these operations 

 Launch the next iteration as soon as possible 

 

 

 

 

 

 

 

 

 

 

At this point, we can 

launch the next 

iteration 

kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    write_output(y); 
  } 
} 



Trouble with Loop-Carried Dependencies 
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Many things can go wrong with loop pipelining: 
 Loop-carried dependency takes too long to compute. 

 Loop with externally-visible events has iterations that get out of order. 

 Loop may have sub-loops with iterations that get out of order. 

 

 

How well is each loop pipelined, 

are there any loop-carried dependency issues, 

and how to fix them? 
 



Local Memory Flexibility 
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FPGA On-chip memory systems 

“Local” and some “private” memories use on-chip block 

RAM resources 
 Very high bandwidth, true random access. 

 

All memory system parameters are customized to your 

application to eliminate or minimize access contention: 
 Width, depth, number of banks, port-to-bank assignment, etc. 

 

Caveat: Compiler has to understand access patterns to 

properly configure a local memory system. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Example: Conflict-free for 1 store, 7 loads. 
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Local Memory Feedback 
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Is my local memory efficient, 

how and why the compiler configured it, 

and what can I do to fix any inefficiencies? 
 

 



Altera SDK for OpenCL Tools 

41 



Dynamic Profiler 
for measuring pipeline efficiency 
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Pipeline Performance Stats 

(collected with hardware counters) 

Memory bandwidth 

demand of a load unit. 

How often this unit 

stalls the pipeline. 

How often this unit 

does useful work. 



Area Report 
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 1 #define NUM_READS    8 

  2 #define NUM_WRITES   8 

  3 

  4  

  5 __attribute((reqd_work_group_size(1024,1,1))) 

  6 kernel void big_lmem (global int* restrict in, 

  7                       global int* restrict out) { 

  8  

  9   local int lmem[1024]; 

 10   int gi = get_global_id(0); 

 11   int gs = get_global_size(0); 

 12   int li = get_local_id(0); 

 13   int res = in[gi]; 

 14   #pragma unroll  

 15   for (int i=0; i<NUM_WRITES; i++) { 

 16     lmem[li - i] = res; 

 17     res >>= 1; 

 18   } 

 19   barrier(CLK_GLOBAL_MEM_FENCE); 

 20   res = 0; 

 21   #pragma unroll  

 22   for (int i=0; i < NUM_READS; i++) { 

 23     res ^= lmem[li - i]; 

 24   } 

 25   out[gi] = res; 

 26 } 

Detailed description of 

local memory with 

actionable suggestions 

for improvements. 

All accesses to local 

memory are described, 

including their stall 

status. 

Break down Area 

utilization into BSP, 

global interconnect, 

kernels, and line 

numbers. 

Total global interconnect 

configuration. 



Optimization Report  
for Loop Pipelining Feedback 
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=================================================================== 

Kernel: my_kernel                                                                         

=================================================================== 

The kernel is compiled for single work-item execution. 

 

Loop Report: 

 

 + Loop "Block1" (file a.cl line 2) 

   Pipelined with successive iterations launched every 324 cycles due to: 

 

       Memory dependency on Load Operation from: (file a.cl line 3) 

         Store Operation (file a.cl line 3) 

       Largest Critical Path Contributors: 

           49%: Load Operation  (file a.cl line 3) 

           49%: Store Operation  (file a.cl line 3) 

 

=================================================================== 



Thank You 
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