
OpenCL Compiler Tools for FPGAs

Dmitry Denisenko, Engineering

Programmable Solutions Group, Intel

April 21, 2016

Motivation

2

Great performance comes from deep understanding of

hardware architecture, compiler, and the algorithm.

Compiler tools must educate the user about the underlying

architecture and how user’s algorithm fits onto it.

How differences in FPGA architecture lead to

differences in OpenCL FPGA compiler tools.

Talk Overview

3

How are FPGAs different from other architectures?
1. Computation in Space versus Time

2. Importance of Area

3. Loop Pipelining

4. Local Memory Flexibility

5. (other ways we’re not going to cover here)

Altera SDK for OpenCL Tools that deal with these

concepts.

1. Computation in Space

4

B

A

A
ALU

A simple 3-address CPU

5

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load memory value into register

6

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Add two registers, store result in register

7

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

A simple program

Mem[100] += 42 * Mem[101]

CPU instructions:

8

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

CPU activity, step by step

9

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Time

Unroll the CPU hardware…

10

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space

… and specialize by position

11

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

… and specialize

12

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

… and specialize

13

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

… and specialize

14

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

… and specialize

15

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

Optimize the Datapath

16

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

6. Reschedule!

Data parallel kernel

17

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum(…);

Example Datapath for Vector Add

On each cycle the portions of the

datapath are processing different

threads

While thread 2 is being loaded,

thread 1 is being added, and thread

0 is being stored

18

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

On each cycle the portions of the

datapath are processing different

threads

While thread 2 is being loaded,

thread 1 is being added, and thread

0 is being stored

19

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

On each cycle the portions of the

datapath are processing different

threads

While thread 2 is being loaded,

thread 1 is being added, and thread

0 is being stored

20

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

On each cycle the portions of the

datapath are processing different

threads

While thread 2 is being loaded,

thread 1 is being added, and thread

0 is being stored

21

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+

0

Work item IDs

Example Datapath for Vector Add

On each cycle the portions of the

datapath are processing different

threads

While thread 2 is being loaded,

thread 1 is being added, and thread

0 is being stored

22

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

+

0

1

Work item IDs

23

How does my pipeline look like,

how well is it performing,

and are its bottlenecks?

2. Area

24

Area

25

FPGA area is multi-dimensional:
 Registers

 Look-Up Tables (LUTs)

 On-chip RAM blocks

 Dedicated Signal Processing (DSP) blocks

Each FPGA model provides a different mix of these four

types of resources.

Each design demands a different mix of these four types.

Importance of Area

26

Area on an FPGA is major concern:
 Higher area  fewer kernels per chip

 Higher area  no-fit

 Higher area  more expensive chip

 Higher area  higher dynamic power

How much area does a kernel use

and where does it go?

Area Report Detail

27

For area report to be actionable, it must be done on a sub-line level.

float_cache[li] = global_int_data[gi+i];

Operations that consume area from the line above:

float_cache[li] = // Store to local memory

 (float) // Implicit int-to-float conversion

 global_int_data[] // Global load

 gi+i // Integer addition

3. Loop Pipelining

28

Data-Parallel Execution

29

On the FPGA, we use pipeline parallelism to achieve

acceleration

Threads execute in an embarrassingly parallel manner.

Ideally, all parts of the pipeline are active at the same time.

kernel void
sum(global const float *a,
 global const float *b,
 global float *c)
{
 int xid = get_global_id(0);
 c[xid] = a[xid] + b[xid];
}

Load Load

Store

+
0

1

2

Data-Parallel Execution - drawbacks

30

Difficult to express programs which have partial

dependencies during execution

Would require complicated hardware and new language

semantics to describe the desired behavior

Load Load

Store

+
0

1

2 kernel void
sum(global const float *a,
 global const float *b,
 global float *c)
{
 int xid = get_global_id(0);
 c[xid] = c[xid-1] + b[xid];
}

Solution: Tasks and Loop-pipelining

31

Allow users to express programs as a single-thread

Pipeline parallelism still leveraged to efficiently execute

loops in Altera’s OpenCL
 Parallel execution inferred

by compiler

 Loop Pipelining

Load

Store

+

for (int i=1; i < n; i++) {
 c[i] = c[i-1] + b[i];
}

i=0

i=1

i=2

Loop Pipelining Example

32

No Loop Pipelining

i0

i1

i2

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i0

i1

i2

i3

i4

i5

C
lo

c
k
 C

y
c
le

s

Looks almost

like multi-

threaded

execution!

With Loop Pipelining

Loop Pipelining enables Pipeline Parallelism AND the

communication of state information between iterations.

Parallel Threads vs. Loop Pipelining

33

So what’s the difference NDRange and loop pipelining?

Parallel threads

launch 1 thread per

clock cycle in

pipelined fashion

Sometimes

loop iterations

cannot be

started every

cycle.

Parallel Threads Loop Pipelining

t0

t1

t2

t3

t4

t5

i0

i1

i2

i3

i4

i5

Loop-Carried Dependencies

34

Loop-carried dependencies are dependencies where one

iteration of the loop depends upon the results of another

iteration of the loop

The variable state in iteration 1 depends on the value from iteration 0.

Similarly, iteration 2 depends on the value from iteration 1, etc.

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 write_output(y);
 }
}

Loop-Carried Dependencies

35

To achieve acceleration, we pipeline each iteration of a

loop with loop-carried dependencies
 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as possible

At this point, we can

launch the next

iteration

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 write_output(y);
 }
}

Trouble with Loop-Carried Dependencies

36

Many things can go wrong with loop pipelining:
 Loop-carried dependency takes too long to compute.

 Loop with externally-visible events has iterations that get out of order.

 Loop may have sub-loops with iterations that get out of order.

How well is each loop pipelined,

are there any loop-carried dependency issues,

and how to fix them?

Local Memory Flexibility

37

FPGA On-chip memory systems

“Local” and some “private” memories use on-chip block

RAM resources
 Very high bandwidth, true random access.

All memory system parameters are customized to your

application to eliminate or minimize access contention:
 Width, depth, number of banks, port-to-bank assignment, etc.

Caveat: Compiler has to understand access patterns to

properly configure a local memory system.

Example: Conflict-free for 1 store, 7 loads.

39

Block

RAM

Up to

Four

ports

1 write

7 read

Block

RAM

Block

RAM

Memory

2x clock

Port0

Port3

store
load

load
load

Port1

Port2
load
load

load Memory

2x clock

Port0

Port3

Port1

Port2

Local Memory Feedback

40

Is my local memory efficient,

how and why the compiler configured it,

and what can I do to fix any inefficiencies?

Altera SDK for OpenCL Tools

41

Dynamic Profiler
for measuring pipeline efficiency

42

Pipeline Performance Stats

(collected with hardware counters)

Memory bandwidth

demand of a load unit.

How often this unit

stalls the pipeline.

How often this unit

does useful work.

Area Report

43

 1 #define NUM_READS 8

 2 #define NUM_WRITES 8

 3

 4

 5 __attribute((reqd_work_group_size(1024,1,1)))

 6 kernel void big_lmem (global int* restrict in,

 7 global int* restrict out) {

 8

 9 local int lmem[1024];

 10 int gi = get_global_id(0);

 11 int gs = get_global_size(0);

 12 int li = get_local_id(0);

 13 int res = in[gi];

 14 #pragma unroll

 15 for (int i=0; i<NUM_WRITES; i++) {

 16 lmem[li - i] = res;

 17 res >>= 1;

 18 }

 19 barrier(CLK_GLOBAL_MEM_FENCE);

 20 res = 0;

 21 #pragma unroll

 22 for (int i=0; i < NUM_READS; i++) {

 23 res ^= lmem[li - i];

 24 }

 25 out[gi] = res;

 26 }

Detailed description of

local memory with

actionable suggestions

for improvements.

All accesses to local

memory are described,

including their stall

status.

Break down Area

utilization into BSP,

global interconnect,

kernels, and line

numbers.

Total global interconnect

configuration.

Optimization Report
for Loop Pipelining Feedback

44

===

Kernel: my_kernel

===

The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file a.cl line 2)

 Pipelined with successive iterations launched every 324 cycles due to:

 Memory dependency on Load Operation from: (file a.cl line 3)

 Store Operation (file a.cl line 3)

 Largest Critical Path Contributors:

 49%: Load Operation (file a.cl line 3)

 49%: Store Operation (file a.cl line 3)

===

Thank You

45

