OpenCL Compiler Tools for FPGASs

Dmitry Denisenko, Engineering
Programmable Solutions Group, Intel
April 21, 2016

[NBEERA,

now part of Intel

® 2016 Altera—Public

Motivation

« Great performance comes from deep understanding of
hardware architecture, compiler, and the algorithm.

« Compiler tools must educate the user about the underlying
architecture and how user’s algorithm fits onto it.

How differences in FPGA architecture lead to
differences in OpenCL FPGA compiler tools.

[ANO[S RYA\,
2 © 2016 Altera—Public now part of Intel

Talk Overview

« How are FPGAs different from other architectures?
Computation in Space versus Time

Importance of Area

Loop Pipelining

Local Memory Flexibility

(other ways we’re not going to cover here)

o s~ WP

« Altera SDK for OpenCL Tools that deal with these
concepts.

[ANO[S RYA\,
3 © 2016 Altera—Public now part of Intel

1. Computation in Space

[NBEERA,

now part of Intel

4 ® 2016 Altera—Public

A simple 3-address CPU

4 il I

LdAddr LdData

StAddr|
PC — Fetch » Load » Store
l T stbata
Instruction | Op
Op Registers j\ ______
B Aaddr ALU
- : 1
A ; . C
Val Baddr TN
B e s g
Caddr B
SE— : =®—I—P/
- : .
CWriteEnable I CData B IRt '
Op
AITERAN
5 © 2016 Altera—Public

now part of Intel

PC -» Fetch

6

Load memory value into register

4

!

Instruction

Op

© 2016 Altera—Public

Val | Baddr

!

LdAddr LdData StAddr
> Load » Store
i StData
. Op
Registers J\ ______
3 Aaddr ALU
A ; . C
— : >N :
B e AU i
Caddr B
— ; >(§ i) -
- P
CWriteEnabIe1 1 CData ~~TTTTTTTTTTTttttTTTTCT
Op
AITERAN

now part of Intel

Add two registers, store result in register

4 J I

LdAddr LdData StAddr
PC -» Fetch » Load » Store
1 1 StData
Instruction | Op
Op Registers i ______
3 Aaddr ALU
— | > |
A (' C
Val . Baddr : >
— T —D < IR
Caddr B
| — 5 X =
CWriteEnabIe1 YCData Smmmeemmmreemmseeeenoo e |
Op
AITERAN
7 ® 2016 Altera—Public

now part of Intel

A simple program

Mem[100] += 42 * Mem[101]

« CPU instructions:

RO < Load Mem[100]
R1 < Load Mem[101]
R2 < Load #42

R2 < Mul R1, R2

RO < Add R2, RO
Store RO - Mem[100]

[ANO[S RYA\,
8 © 2016 Altera—Public now part of Intel

CPU activity, step by step

by
RO < Load Mem[100]]
Time
e
R1 < Load Mem[101]

l { i

Py
R2 €< Load #42

v i

R2 < Mul R1, R2

by
RO < Add R2, RO
% | i
Store RO - Mem([100] jﬁ
ATERAN

9 © 2016 Altera—Public now part of Intel

Unroll the CPU hardware...

by
RO < Load Mem[100]
Space
e
R1 < Load Mem[101]

l { i

Py
R2 €< Load #42

e 1

R2 < Mul R1, R2

by
RO < Add R2, RO
% | 11
Store RO - Mem[100] jﬁ
ALTERAN

10 © 2016 Altera—Public now part of Intel

... and specialize by position

by
RO € Load Mem|[100
[100] 1. Instructions are fixed.

Remove “Fetch”

N%‘ t
R1 < Load Mem[101] ﬂ_@

% 1 1
R2 €< Load #42
% i

R2 < Mul R1, R2

by
RO < Add R2, RO
% | i
Store RO - Mem[100] jﬁ
ATERAN

1 © 2016 Altera—Public now part of Intel

... and specialize

Remove “Fetch”

2. Remove unused ALU ops
R1 < Load Mem[101] P

—C —
R2 < Load #42 @

o il
R2 ¢ Mul R1, R2 HQ :__ﬁr |

e
RO < Add R2, RO

—»L_—
AITERAN

12 © 2016 Altera—Public now part of Intel

RO < Load Mem[100
[100] ﬁj 1. Instructions are fixed.
@

... and specialize

RO € Load Mem|[100
[100] 1. Instructions are fixed.

Remove “Fetch”
Remove unused ALU ops
Remove unused Load / Store

N

R1 < Load Mem[101]

w

R2 €< Load #42

R2 < Mul R1, R2

RO €< Add R2, RO

LE £ &

Store RO - Mem([100]
ATERAN

13 © 2016 Altera—Public now part of Intel

... and specialize

RO < Load Mem[100] S
I —

R1 < Load Mem[101]

R2 €< Load #42

R2 < Mul R1, R2

RO €< Add R2, RO

Store RO - Mem([100]

14 © 2016 Altera—Public

]

W

Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.

ALTRERAN

now part of Intel

... and specialize

]

RO < Load Mem[100] S

g

R1 < Load Mem[101] ' N

R2 €< Load #42
q%

R2 < Mul R1, R2

RO €< Add R2, RO

N

Store RO - Mem([100] —

15 © 2016 Altera—Public

\

W

Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.
Remove dead data.

ALTRERAN

now part of Intel

RO < Load Mem[100]

R1 < Load Mem[101]

R2 €< Load #42

Optimize the Datapath

s

1. Instructions are fixed.
Remove “Fetch’

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.
Remove dead data.
Reschedule!

W

o 01

R2 < Mul R1, R2

RO €< Add R2, RO

Store RO - Mem([100]

16

[ANO[S RYA\,
© 2016 Altera—Public now part of Intel

Data parallel kernel

float *a =

float *b =

float *answer

© 2016 Altera—Public

__kernel void

sum(__global const float *a,
__global const float *b,
__global float *answer)

{

int xid = get global id(@);
answer[xid] = a[xid] + b[xid];

}

ALTRERAN

now part of Intel

17
e

Example Datapath for Vector Add

8 work items for vector add example

4 0|12 3| 4|[5]| 6|7
RIS
Load Load T
>] > Work item IDs
| T ‘7 « On each cycle the portions of the
:} datapath are processing different
threads
SHEE < While thread 2 is being loaded,

thread 1 is being added, and thread
0 is being stored

[ANO[S RYA\,
18 © 2016 Altera—Public now part of Intel

Example Datapath for Vector Add

8 work items for vector add example

DED 1 2 3 4 56| 7

Load Load T
>] >] Work item IDs
| T ‘7 « On each cycle the portions of the
:} datapath are processing different
threads
SHEE < While thread 2 is being loaded,

thread 1 is being added, and thread
0 is being stored

[ANO[S RYA\,
19 © 2016 Altera—Public now part of Intel

Example Datapath for Vector Add

8 work items for vector add example

Dj:] 2 3 4 |5 |6 7

Load Load T
P Jop] Work item IDs
| T ‘7 « On each cycle the portions of the
:} datapath are processing different
threads
SHEE < While thread 2 is being loaded,

thread 1 is being added, and thread
0 is being stored

[ANO[S RYA\,
20 © 2016 Altera—Public now part of Intel

Example Datapath for Vector Add

8 work items for vector add example

v 3 .4 5 6 7
> 2/]
Load Load T
P 1 p] Work item IDs
| T -, « On each cycle the portions of the
E] datapath are processing different
threads
Sl < While thread 2 is being loaded,

thread 1 is being added, and thread
0 is being stored

[ANO[S RYA\,
21 © 2016 Altera—Public now part of Intel

Example Datapath for Vector Add

8 work items for vector add example

\ 4 4 5 6 7
RS
Load Load T
P J 2 p] Work item IDs
\ + / « On each cycle the portions of the
ﬂi] datapath are processing different
threads
Slore < While thread 2 is being loaded,
0 thread 1 is being added, and thread

0 is being stored

[ANO[S RYA\,
29 © 2016 Altera—Public now part of Intel

How does my pipeline look like,
how well is it performing,
and are its bottlenecks?

[ANO[S RYA\,
23 © 2016 Altera—Public now part of Intel

2. Area

[NBEERA,

now part of Intel

24

Area

« FPGA area is multi-dimensional:
— Regqisters
— Look-Up Tables (LUTS)
— On-chip RAM blocks
— Dedicated Signal Processing (DSP) blocks

« Each FPGA model provides a different mix of these four
types of resources.

« Each design demands a different mix of these four types.

ALTRERAN

25 © 2016 Altera—Public now part of Intel

Importance of Area

« Area on an FPGA is major concern:
— Higher area = fewer kernels per chip
— Higher area =» no-fit
— Higher area = more expensive chip
— Higher area = higher dynamic power

How much area does a kernel use
and where does it go?

[ANO[S RYA\,
26 © 2016 Altera—Public now part of Intel

Area Report Detail

« For area report to be actionable, it must be done on a sub-line level.
float cachel[li] = global int datalgi+i];

« Operations that consume area from the line above:

float cache[li] = /I Store to local memory
(float) /[Implicit int-to-float conversion
global int data[] /I Global load
gi+i /[Integer addition

[ANO[S RYA\,
27 © 2016 Altera—Public now part of Intel

3. Loop Pipelining

A\[] 2 2YA
[ANO[S RYA\

now part of Intel

28 ® 2016 Altera—Public

Data-Parallel Execution

« On the FPGA, we use pipeline parallelism to achieve
acceleration

kernel void

sum(global const float *a,
global const float *b,
global float *c)

{
int xid = get _global id(©9);
c[xid] = a[xid] + b[xid];

}

« Threads execute in an embarrassingly parallel manner.
« ldeally, all parts of the pipeline are active at the same time.

AITERAY
now part of Intel
e

29 © 2016 Altera—Public

Data-Parallel Execution - drawbacks

« Difficult to express programs which have partial
dependencies during execution

kernel void

sum(global const float *a,
global const float *b,
global float *c)

{
int xid = get _global id(©9);
c[xid] = c[xid-1] + b[xid];
}

« Would require complicated hardware and new language
semantics to describe the desired behavior

AITERAY
now part of Intel
e

30 © 2016 Altera—Public

Solution: Tasks and Loop-pipelining

« Allow users to express programs as a single-thread
for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];
}

« Pipeline parallelism still leveraged to efficiently execute
loops in Altera’s OpenCL

— Parallel execution inferred
by compiler
— Loop Pipelining

Load

Store

ALTRERAN

31 © 2016 Altera—Public now part of Intel

Loop Pipelining Example

« No Loop Pipelining « With Loop Pipelining

1
1
1
1
. 1
10 i i0
L] C H i
g I i1 | W E 2
] P9 D E Looks almost
O) [] " like multi-
S - o . threaded
S 12 s E execution!
[] | O I] |
v I i % I
1
l
1
1
!

Finishes Faster because lterations
Are Overlapped

« Loop Pipelining enables Pipeline Parallelism AND the
communication of state information between iterations.

[ANO[S RYA\,
32 © 2016 Altera—Public now part of Intel

No Overlap of Iterations!

33

Parallel Threads vs. Loop Pipelining

« So what's the difference NDRange and loop pipelining?

t0 IO
[] Sometimes
t1 i1 | _ _
o w Parallel threads . | 0op iterations
N s launch 1 thread per ¢- cannot be
I . a clock cycle in I started every
I pipelined fashion cycle.
¥ |i5
Parallel Threads Loop Pipelining
TR

© 2016 Altera—Public now part of Intel

Loop-Carried Dependencies

« Loop-carried dependencies are dependencies where one
iteration of the loop depends upon the results of another

iteration of the loop
kernel void state_machine(ulong n)

{

t_state_vector state = initial_state();

y = process
write output(y);

« The variable state in iteration 1 depends on the value from iteration 0.
Similarly, iteration 2 depends on the value from iteration 1, etc.

AITERAN
34 © 2016 Altera—Public now part of Intel

Loop-Carried Dependencies

« To achieve acceleration, we pipeline each iteration of a

loop with loop-carried dependencies
— Analyze any dependencies between iterations
— Schedule these operations
— Launch the next iteration as soon as possible

kernel void state_machine(ulong n)

{

t _state vector state = initial state();
: ' At this point, we can
I launch the next

iteration

y = process
write output(y);

AITERAN
35 © 2016 Altera—Public now part of Intel

Trouble with Loop-Carried Dependencies

« Many things can go wrong with loop pipelining:
— Loop-carried dependency takes too long to compute.
— Loop with externally-visible events has iterations that get out of order.
— Loop may have sub-loops with iterations that get out of order.

How well is each loop pipelined,
are there any loop-carried dependency issues,
and how to fix them?

[ANO[S RYA\,
36 © 2016 Altera—Public now part of Intel

Local Memory Flexibility

[NBEERA,

now part of Intel

37 ® 2016 Altera—Public

FPGA On-chip memory systems

« “Local” and some “private” memories use on-chip block

RAM resources
— Very high bandwidth, true random access.

« All memory system parameters are customized to your

application to eliminate or minimize access contention:
— Width, depth, number of banks, port-to-bank assignment, etc.

« Caveat: Compiler has to understand access patterns to
properly configure a local memory system.

AITERAN
© 2016 Altera—Public now part of Intel

39

Example: Conflict-free for 1 store, 7 loads.

| Write{
| RAM

Up to Block
Four RAM
ports

> 7 read

y,

\
never-stall store Memory
never-stall load 2x clock
never-stall load
never-stall load /
never-stall load R\
never-stall load
never-stall load Memory

2X clock
/

© 2016 Altera—Public

ALTRERAN

now part of Intel

Local Memory Feedback

Is my local memory efficient,
how and why the compiler configured it,
and what can | do to fix any inefficiencies?

[ANO[S RYA\,
40 © 2016 Altera—Public now part of Intel

Altera SDK for OpenCL Tools

[NBEERA,

now part of Intel

41 ® 2016 Altera—Public

Dynamic Profiler
for measuring pipeline efficiency

. X
5 J - - - - EEEEE e e e
"
Board pcie385n_d5
Global Memory BW (MEMORY) 25600 MB/s ¥
f
J Source Code I Kernel Execution I matrixMul] Memory bandW|dth
Line # Source Code Attributes | Staliss | Occupancys Bandwidth demand of a load unit.
64 a == aknd; . .
85 a+=aStep, b += bStep) { How often this unit
i . .
87 Ji Load the matrices from device memory stalls the plpellne.
63 lito shared memoary; each thread loads
69 /I one element of each matrix
70 AS(ty, te) = Ala + UIWA * ty + 1; 0: __globaMEMORY}, read | 0: 2.93% 0: 95.9% 0: 1398.5MB/s, 100.00%Eficiency
71 BSity, i) = B[b + UiWB * ty + 1x]; 0: _ globalfMEMORY},read | 0: 0.08% 0: 95.9% 0: 10.1MB/s, 100.00%Efficiency
72
73 Il Synchronize to make sure the matrices are loaded 0: __globa{MEMORY},read \
74 barrier(CLK_LOCAL_MEM_FENCE); Cache Hits: 99.9% > |
75 Mon-aligned Accesses: 0.0%
76 #pragma unroll Memory site coalesced with other memory sites. H W n hl ni
77 for (int k = 0; k < BLOCK_SIZE; ++k) { ow often this unit
78 Csub += AS(ty, kI * BS(k, b 0:__local/ead 0: 0.0% 0: 95.9% does useful work.
79 1 \
80 i
a1 Il Synchronize to make sure that the preceding
82 I/l computation is done before loading two new
83 Il sub-matrices of A and B in the next iteration
84 barrier(CLK_LOCAL_MEM_FEMNCEY);
85 1 v |
. r— e R L —— _— _— > |

Pipeline Performance Stats
(collected with hardware counters) INGTERAY

42 © 2016 Altera—Public now part of Intel

43

Area Report

1 #define NUM_READS 8
2 #define NUM_WRITES 8
3

4

Board interface

38262

Break down Area
utilization into BSP,
global interconnect,
kernels, and line

numbers.

44528

257

Detailed description of
local memory with
actionable suggestions
for improvements.

Total global interconnect
configuration.

Platform interface logic.

5 _ attribute((reqd_work_group_size(1024,1,1))
6 kernel void big_Imem (global int* restrict in,
7 global int* restrict out) {

8

Global interconnect

Function overhead

v
Global interconnect for 1 global load
and 1 global store.

Kernel dispatch logic.

9 local int Imem[1024]; —
. . . e Local memory: Potentially inefficient
10 intgi=get gIobaI Id(O); configuration.
- - Reguested size 4096 hytes (rounded
11 intgs = get _global_size(0); up to nearest power of 2), implemented
— - ! size 8192 hytes, replicated 2 times
12 int |i = get |0C3.| |d(0) total, stallable, 8 reads and 8 writes.
— — ! N Addi(tjional ir?formagon: -
i =i il . - Reduce the number of write accesses
13 intres = In[gl]’ b.cl:g (Imem) 132 1024 8 0 or fix banking to make this memory
system stall-free.
14 #pragma unroII - Replicated 2 times to efficiently
Pt =) i support multiple simultaneous
15 fOf (mt I_O’ |<NUM—WRITES' |++) { workgroups. This replication resulted in
FS . no increase in actual block RAM usage.
16 Imem[“ - I] =res; - Banked on lowest dimension into 49
17 res >>= 1- separate banks (this is a good thing).
1 8 } Block0 (Logic: 196) 4452 (1%) 7480 (1%) 70 (3%) 0 (0%)
19 barrier(CLK_GLOBAL_MEM_FE State 64 64 0 0
20 res=0; b.cl:13 358 497 13 0
21 #pfégn?a Ur.ll’0|| . b.ol16 779 2591 5 0 . g,tcalll_lgble write to memory declared on
22 for (inti=0; i < NUM_READS; i++) { o A
23 res "= Imem(li - i]; berty & 7 0 0 /
24 }
25 out[gi] =res; All accesses to local
26} memory are described,
including their stall =
status. A ERAY
© 2016 Altera—Public now part of Intel

Optimization Report
for Loop Pipelining Feedback

The kernel is compiled for single work-item execution.
Loop Report:

+ Loop "Blockl" (file a.cl line 2)
Pipelined with successive iterations launched every 324 cycles due to:

Memory dependency on Load Operation from: (file a.cl line 3)
Store Operation (file a.cl line 3)
Largest Critical Path Contributors:
49%: Load Operation (file a.cl line 3)

49%: Store Operation (file a.cl line 3)

[ANO[S RYA\,
44 © 2016 Altera—Public now part of Intel

Thank You

/NETERA,

now part of Intel

45 ® 2016 Altera—Public

