ﬁuﬁteelww—rwee%
OpenCL-Based Mobile GPGPU
Benchmarking:

~Methods and Challenges

Rotem Aviv
Guohui Wang

Qualcomm Technologies, Inc.

April 21t 2016

QUALCOM/W

Anenda
Agenaa

Introduction and Motivation
Methods and Challenges in Benchmark Design

Conclusions

QUALCONVW

Benchmarks are essential tools for developers and GPU architects

O Architecture exploration
O Performance analysis

O Application optimizations

Benchmarks of differentlevels serve different purposes

Face Detection Fluid Dynamics Eye Tracking +— Level 2

Histogram Box filter Integral Image ~ Matrix Multiply Rl W=\ |

Workload
complexity

Memory Memory Image Local Enqueue Math
ALUBW ‘2iBW coslesc. WrBW atomics owerhead BW REEEEELAY

Benchmarks levels are a suggestion for categorizing different tests based on complexity. The SHOC
benchmark applies similar categorization (https://github.com/vetter/shoc).

Level 1&2 (high-level) benchmarks measure the performance of a device in running certain
functionalities and use-cases, such as histogram, box filter, integral image, or more complex
algorithms such as face detection, and fluid dynamics simulation.

Level 0 (low-level) benchmarks measure performance of specific logic modules or low-level
capabilities of a device such as ALU bandwidth, memory read bandwidth, kernel enqueue overhead,
etc.

Mobile GPGPU benchmarking is sensitive to multiple system factors such as power management,
driver overhead, context switch, compiler, HW differences across platforms, and more.

QUALCO/WW

Why do we observe performance variance?
* Dynamic system memory load

» Power management and clock throttling

*» Thermal limitation

* Timer accuracy

How can we mitigate performance variance?
* Longer workloads

* Multiple test iterations

* Minimize host-device sync (e.g. clFinish)

* In-test variance monitoring

* Disable non-benchmark tasks

+ Correlate multiple timer data

» Use timer that runs at constant rate

Factors contributing to performance variance:

» Dynamic system memory load, as the memory serves multiple clients in the system

» Power management mechanism will throttle clocks through different parts of the system,
which may change performance across various benchmark runs

» Thermal limitation will protect HW from over-heating, may limit performance at certain
physical conditions

» Timer accuracy may introduce variance in measured performance

Mitigation

» Use longer workloads, run multiple test iterations while monitoring variance

* Minimize host-device sync operations, such as clFinish

* Minimize non-benchmark tasks
» Ease system memory load and CPU workload
» Make sure CPU and memory load is low before and during benchmark run
» Benchmark can detect high CPU load automatically, disable test run at extreme conditions
* Avoid any unnecessary application activity during benchmark execution

» Use more than one timer if possible, correlate results. OpenCL 2.1
clGetDeviceAndHostTimer allows synchronizing host and device timers, and could assist in
correlation process

» Use system timer that runs at constant clock rate, if possible, and is not affected by power
management

QUALCONVW

2D-FFT Variance Mitigation

Qualcomm Adreno A430 GPU

40 —+—256x256 256x256 Average

35 .
o)_//\ 8.2% variance
g 30 W I
E 25

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

100 ——1024x1024 1024x1024 Average
95
o e 6%
85
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

Qualcomm Adreno is a product of Qualcomm Technologies, Inc

In this case we look at performance of 2D-FFT running on Qualcomm Adreno A430 GPU using
OpenCL. Increasing the workload from input of 256x256 to 1024x1024 reduces variance from 8.2% to

1.6%.

QUALCO/WW

40
35
v 30
25
20

100
95
20
85

mSec

80

2D-FFT Variance Mitigation

Qualcomm Adreno A430 GPU
——256X256 256x256 Average

M 8.2% vaErpe

~———— .

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

—+—1024x1024 10 Frames/clFinish 1024x1024 10 Frames/cIFinish Average

1.2% variance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

Qualcomm Adreno is a product of Qualcomm Technologies, Inc

Further variance reduction is achieved through reducing host-device sync (clFinish) from every frame
to once every 10 frames. As a result, variance is reduced from 1.6% to 1.2%.

QUALCO/WW

| kernel void madif(..)
{
for (jJ = 0; j < iterations; ++]j)

* Too frequent driver activity > host-bounded -

benchmark S0 = S0 * s1 + s2;
+ Minimize number of kernel enqueue operations s0 = s0 * sl + s2;
s0 = s0 * s1 + s2;
* Exclude warm-up from time measurement and
scoring }
}
clFinish

eng |enq |eng |enq | eng | eng [eng | eng | eng | enq | enq | enqg

clFinish clFinish clFinish clFinish clFinish clFinish

enqueue

enqueue enqueue

enqueue enqueue

enqueue

clFinish clFinish clFinish

enqueue enqueue enqueue

time

Too frequent driver operations (triggered by OpenCL API calls) may shift the workload
bottleneck to the host, making the benchmark to be bounded by the host and not by the GPU.
To reduce driver activity in the benchmark, minimize number of kernel enqueue operations.
Increase workload per kernel enqueue and reduce number of enquques. For small kernels,
consider merging kernel functionality to create larger kernels.

Warm-up enqueue may improve overall performance in some cases. Exclude warm-up activity
from time measurement.

QUALCO/WW

» Compute, Graphics, Ul

benchmark run

Qualcomm Adreno A430 GPU

495
490
485
§ 480
£ 475
470
465
460

* Avoid context switch of any kind during

Ul Event Ul Event
clFinish
Enqueues
B || | I
Time (CPU)
Kernel A Kemel B Kermnel C Kemel D
ma (DL
Time (GPU)
2D-FFT

=e—CL only =e=CL+UI(1) =e=CL+UI(2)

Iteration

Qualcomm Adreno is a product of Qualcomm Technologies, Inc :

GPU contexts can be of different types and triggered by different applications. In a GPU compute
benchmark, the main workload typically runs through the benchmark’s compute context. Best
performance can be achieved when the workload context is not switched while running the workload
and measuring time. However, if a context switch occurs, the benchmark workload execution may be
interrupted in some cases, and the measured performance may be lower.
In this example, we show performance of 2D-FFT application, where 4 kernels are enqueued
sequentially. Shortly after the kernels are enqueued and before clFinish returns, the application
launches a Ul event in the form of a screen print. Since printing to the screen is handled by the Ul
context, a context switch occurs. As a result, measured performance is slower. As can be seen in the
chart, performance slowdown is proportional to the number of Ul events.

QUALCO/WW

* Tuning local work size for best performance Work size X
2 4 8 16 32 64

» Cannot estimate optimal work size and shape

+ Best practice: try different sizes and shapes and
see which works best on every device

L I e

» Can be automated as part of initialization process

Work size Y
>

[-
Slow Fast

[Not applicable

Why does the work-group size and shape affects performance? The work-group size and
shape determine the memory access pattern, which may affect performance in memory-bound
cases. The Memory access pattern can determine effective memory bandwidth, bank conflicts,
cache utilization and other factors.

How to determine the work-group shape? Try various shapes (1-D, 2-D, 3-D), select the best
performing one. Naturally, the local shape is limited by the global shape.

For example, work size tuning in 2-D case: initial size = N, measure performance with work-
group size = (N,1), (N/2,2), (N/4, 4), ..., (1,N), change N and try various work-group shapes
again.

The figure on the right is a theoretic illustration of performance with different 1D/2D work size
and shapes (diagram may change for different use-cases). The grey area represents non-
applicable work-group size (larger than maximum work-group size). Small work-group size
may yield slow performance due underutilization of HW, whereas larger work-group size will
better utilize the HW and have better performance. Good performance is achieved by utilizing a
large enough work-group and by tuning the shape. In some cases, a work-group size that is too
large may slow-down performance.

10

QUALCO/WW

Running Time

Running Time

©

3
25

2
15
1
5
0

Qualcomm Adreno A430 GPU

1D-FFT
(448,1) (224,2) (112,4) (56,8) (28,16) (14,32) (7,64) (3,149) (1,448)

Work-Group Size

Matrix Multiply

(1024,1) (512,2) (256,4) (128,8) (64,16) (32,32) (16,64) (8,128) (4,256) (2,512) (1,1024) NULL
Work-Group Size
Qualcomm Adreno is a product of Qualcomm Technologies, Inc.

As can be seen in the charts above, the work group shape tuning has a significant effect on matrix
multiply performance in Qualcomm Adreno A430 GPU, but almost no effect in case of 1D-FFT.

11

QUALCO/WW

« Compiler optimization can change the test functionality, making the result invalid

float data_a = mem in[get_global 1id(0)];

float data_b = mem in[get_global_id(0)+1]; Compiler

for(int i=0; i < LOOP_CNT; ++i) ({ PN
= optimization

data_a += data_b; » data a = data b * C
data_a += data_b; - -

float data_a = mem in[ge
float data_b = mem in[ge

_global _id(0)1;
_global_id(0)+1];

float data_c = mem in[get_global_ id(0)+2];
float data_d = mem in[get_global_id(0)+3];
while (data a < LOOP CNT) {

data a += Eata_b;: Unlikely to be

data c += data d; optimized by compiler

}
mem out[get global id(0)] = data_a + data_c;

QUALCOM/W

12

Nath BRenchmarkin

ivicas

* Potential issues
* Result may converge to constant value (e.g. 1.0, Inf, NaN)
» Such convergence may represent a non-typical workload
+ Corner case, resolved with minimal computation

Log GFLOPs (strict-math)
(Qualcomm Adreno A430 GPU)

float data = mem in[get global id(0)]: & Nave implementation
for (int i = 0; i < LOOP_CNT; ++i){ 10

data = log(data): 8

data = log(data)

data = log(data); g 6
U 2
mem out[get global id(0)] = data;

0
0.0 1.0 1.00E+10 inf -1.0 Random
Initial Value

Qualcomm Adreno is a product of Qualcomm Technologies, Inc

13

QUALCO/WW

Nath BRenchmarkin

ivicasi e

* Potential issues
*» Result may converge to constant value (e.g. 1.0, inf, NaN)
» Such convergence may represent a non-typical workload
* Corner case, resolved with minimal computation

float data = mem in[get_global_id(0)1: Hata = log(data);

for (int i = 0; i < LOOP CNT; ++i){ Erim o cotm !
- r

GEiE = TeERE data = log(data):;

data = log(data)

loa(data);
~egicatay;

ata *= data;
data = log(data):;
data *= data;

}
mem out[get global id(0)] = data;

Suggested solution

Log GFLOPs (OpenCL strict-math)

10 M Naive i i B New I i
«»
o
9 s
w
o
I (Qualcomm
0 [| B AdrenoAd430GPU)
0.0 1.0 1.00E+10 inf -1.0 Random
Initial Value

Qualcomm Adreno is a product of Qualcomm Technologies, Inc

Math functions, in some cases, are implemented by complex set of instructions, which may check for
corner cases and have multiple execution paths. As a result, math function performance may depend
on the input value. In this case, we look at performance of function log in OpenCL strict-math mode
running on Qualcomm Adreno A430 GPU. By modifying the input value to log() before every function
call, we can avoid log result from convergence into a constant value for certain types of inputs, and
the measured result reflects a more typical performance of log in a real use-case. Developing math
benchmarks requires special attention to functions which may perform differently depending on the
input value.

QUALCO/WW

14

Rational Metrics

L L iviour

» Defined as ratio between two metrics

+» Can assist in estimating device efficiency in performing a certain workload

Example

float4 ADD 500 GFLOPs
P —— (float4 ADD): (Global mem read 128-bit)

read 128-bit

===

10 FLOP/B

Relative performance metrics helps in understanding the strength and weakness points in a device
architecture. With the example shown above, we can compute the relative performance of float4 ADD
to global memory read of 128-bit data, and derive the rational performance of these two metrics.
Given a certain workload with known requirements for operations such as data fetch bandwidth and
ALU operation count, rational performance metrics can also assist in predicting whether a device can

efficiently execute the workload.

16

QUALCONVW

Fully optimize code Vendor libraries

‘G N
i !
H H
i Common optimizations techniques :
i |
. J
{ }
i Naive code !
! !
! 1

Auxe|dwon peonpey

Developing a high-level benchmark requires balancing between several considerations. On the one
hand, a correct assessment of performance requires running a workload that can maximize device
utilization and efficiency. On the other hand, the benchmark has to be designed in a cross-platform
approach so that it can be executed on multiple devices. Optimizing performance of a benchmark
often required careful optimization and even using vendor libraries, if those are available. In some
cases, using dedicated HW features for better performance generates differences in results, mainly
due to HW differences in features that are not explicitly defined by the API spec. These differences
may expose differences in workload across devices, making the performance comparison less “fair”.
In order to make sure all devices run the exact same workload and to make the benchmark cross-
platform tool, a developer may compromise on performance. Such compromise can include using
only common optimization techniques that are supported by multiple devices, which are less likely to
generate differences in result. Using naive code is beneficial in terms of development time and cross-
platform capability, but will poorly utilize the device, making the benchmark result highly uncorrelated
with the device true capability. Benchmark developers should find the right balance between these
different considerations. Achieving “fairness” by maintaining workload consistency across devices is
highly important, yet developers should also try to improve performance using common and device
specific optimization, while utilizing the latest API features. The advancement of compilers and
drivers, as well as the gradually increasing availability of optimized libraries can be leveraged by
benchmark developers in creating more accurate and balanced benchmarks.

QUALCO/WW

17

* Critical for validation of score

Cascade Architecture *
— Process on T cosn T cssm LR
Input Image F E F F

[*] Robust Real-Time Face Detection, PAUL VIOLA and MICHAEL J. JONES, International Journal of Computer Vision 57(2),
137-154,2004

Result verification is a key component in benchmarking. It enables the benchmark to make sure the
device executed the functionality as expected, validating the performance measurement.

Workload output should be compared to pre-calculated reference. Reference data can be computed
offline or outside time measurement scope. Online reference computation may increase chances of
thermal gating. It is recommended to avoid long and compute-heavy reference computations during
benchmark run.

In some use-cases, performance may be data dependent. One example is the Viola-Jones Face
Detection algorithm™*, which is based on a cascade of logic modules. HW differences across devices
may cause differences between intermediate results of the same stage across different devices,
leading to workload and performance differences. To make sure workload is consistent across
devices, it is recommended to compare workload output to reference data in intermediate stages as
well as in the final stage of the computation.

When comparing workload output to reference, define error margins large enough to accommodate
differences between various GPU implementations. Error margin definition may require
experimenting with multiple devices.

18

QUALCONVW

Other Key To

Not discussed due to lack

* Global work-size selection
* Make sure GPU is fully utilized
» Partially active work-groups should be relatively small in number
* Tune global shape if possible

* GPU Workload
+ Balance workload length and thermal limit

* OpenCL compiler flags

* Optimization
» Use common optimization techniques shared by multiple devices

* Vectorization, native math, SIMD friendly (minimal branching), minimal data type, etc

19

QUALCOM/W

+ Utilize the desired benchmark level to extract low-level HW performance data, estimate

device performance of real use cases and compare performance across device

+ Mobile devices are sensitive to multiple system-level factors: power management, driver

overhead, context switch. Design your workloads to be long enough, avoid context switch
and keep CPU-GPU sync events to a minimum

Local work-size tuning is a simple low-cost approach for obtaining better performance in
many use-cases

* While developing low-level benchmark, be aware of compiler optimization, try to detect it

and work-around if possible

+ Balance performance with faimess and design consideration. If comparing performance

across platforms, make sure workload is identical. Comparing across APIs can be
misleading due to differences in API features and precision

+ Verification is a key stepin validating measured performance. It is also a tool for ensuring

workload consistency.

20

QUALCONVW

Thank you

FoIIowuson:f , in “

For more information, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

ices referenced herein
Al Rights Reserved

United States and other countries
arks of their respective owners

mm Incorporated, Qualcomm Technologies, Inc.., and/or
e structure, as applicable. Qualcomm Incorporated
includes Qu QTL. and the : f ts patent portfolio. Qualcomm Technologies, Inc
a wholly-owne ary of Qualcom 0 ong with its subsidiaries, substantially al of
tially all of its product and serv

21

QUALCO/WW

