
International Workshop On OpenCL
Vienna, April 20th 2016

hiCL:
An OpenCL Abstraction Layer for Scientific Computing,

Application to Depth Imaging on GPU and APU

Issam Said, Pierre Fortin, Jean-Luc Lamotte, Henri Calandra
contact: isaid@uh.edu

Scientific computing
CPU platforms are the reference

Scientific applications

implement

optimize
build

deploy

Programming languages: Fortran, C/C++, ...

 CPU platforms

MPI

Issam Said IWOCL 2016 04/20/2016 1/30

Scientific computing
Leveraging hardware accelerators (HWAs)

Scientific applications

Programming languages: Fortran, C/C++, ...

implement

optimize
build

deploy

GPU FPGA Xeon Phi APU

 Hardware accelerators (HWAs)

Issam Said IWOCL 2016 04/20/2016 2/30

Scientific computing
Leveraging hardware accelerators (HWAs)

Scientific applications

Programming languages: Fortran, C/C++, ...

implement

optimize
build

deploy

GPU FPGA Xeon Phi APU

 Hardware accelerators (HWAs)

Issam Said IWOCL 2016 04/20/2016 2/30

OpenCL: a standard for HPC

Compute device

Caches

Global memory

Compute unit 1

Private

memory

Private

memory

PE PE

Local memory 1

Constant memory

Compute unit n

Private

memory

Local memory n

• Portable programming model (Khronos)
• Host code + kernels (compiled at runtime) executed on HWAs

Issam Said IWOCL 2016 04/20/2016 3/30

OpenCL: a standard for HPC
Typical programming steps

• Query the platform
• Select the devices
• Create a context
• Create command queues
• Create buffer objects
• Transfer data to device
• Create/build programs
• Extract kernels
• Launch kernels (on the device, the most important step)
• Transfer results to host
• Release buffers, kernels and the context

Issam Said IWOCL 2016 04/20/2016 4/30

OpenCL: a standard for HPC
Typical programming steps

• Query the platform
• Select the devices
• Create a context
• Create command queues
• Create buffer objects
• Transfer data to device

too verbose for scientific
computing

• Create/build programs
• Extract kernels
• Launch kernels (on the device, the most important step)
• Transfer results to host
• Release buffers, kernels and the context

Issam Said IWOCL 2016 04/20/2016 4/30

OpenCL: a standard for HPC
Managing memory objects

• HWAs are evolving very quickly
• Different memory subsystems are emerging:

• Integrated HWA sharing memory with the CPU
• Software manipulations are needed to take advantage of new designs
• Example: the AMD Accelerated Processing Unit (APU)

Issam Said IWOCL 2016 04/20/2016 5/30

OpenCL: a standard for HPC
Managing memory objects

• HWAs are evolving very quickly
• Different memory subsystems are emerging:

• Integrated HWA sharing memory with the CPU
• Software manipulations are needed to take advantage of new designs
• Example: the AMD Accelerated Processing Unit (APU)

might be a tedious task
for scientists

Issam Said IWOCL 2016 04/20/2016 5/30

What is an APU?

..

GPU main memory

Dispatch units

L2

CU0

L1Local memory

Register file

PE

CU1

L1Local memory

Register file

PE

CUN-1

L1Local memory

Register file

PE

CPU

System memory

CPU0

L1 WC

L2

CPUs-1

L1 WC

L2

L3

FPUFPU

PCI Express Bus

.

CPU

System memory

CPU3

L1 WC

L2

FPU

CPU2

L1 WC

L2

FPU

CPU0

L1 WC

FPU

CPU1

L1 WC

L2

FPU

Quad-core CPU module

Dispatch units

CU0

TEX L1Local memory

Register file

PE

CU1

TEX L1Local memory

Register file

PE

CUN-1

TEX L1Local memory

Register file

PE

Integrated GPU moduleUNB

G
P
U

m
e
m
o
r
y

c
o
n
t
r
o
l
l
e
r

M
e
m
o
r
y

c
o
n
t
r
o
l
l
e
r

GARLIC
ONION

.

Accelerated Processing Unit (APU)

.

CPU+discrete GPU

Issam Said IWOCL 2016 04/20/2016 6/30

What is an APU?

..

GPU main memory

Dispatch units

L2

CU0

L1Local memory

Register file

PE

CU1

L1Local memory

Register file

PE

CUN-1

L1Local memory

Register file

PE

CPU

System memory

CPU0

L1 WC

L2

CPUs-1

L1 WC

L2

L3

FPUFPU

PCI Express Bus

.

CPU

System memory

CPU3

L1 WC

L2

FPU

CPU2

L1 WC

L2

FPU

CPU0

L1 WC

FPU

CPU1

L1 WC

L2

FPU

Quad-core CPU module

Dispatch units

CU0

TEX L1Local memory

Register file

PE

CU1

TEX L1Local memory

Register file

PE

CUN-1

TEX L1Local memory

Register file

PE

Integrated GPU moduleUNB

G
P
U

m
e
m
o
r
y

c
o
n
t
r
o
l
l
e
r

M
e
m
o
r
y

c
o
n
t
r
o
l
l
e
r

GARLIC
ONION

.

1- Low compute power as compared to GPUs:
 - APU up to 25 GB/s memory bandwidth
 - GPU 300 GB/s≃
2- Complex memory system:
 - explicit-copy
 - zero-copy

 Weaknesses

.
Strengths

1- No PCI Express bus
2- Integrated GPUs can address the entire memory
3- Low power processors (95 W TDP at most):≃
 - CPU 150 W TDP at most≃
 - GPU 250 W at most≃

.

Accelerated Processing Unit (APU)

.

CPU+discrete GPU

Issam Said IWOCL 2016 04/20/2016 6/30

Motivations and context

Quest for a tool that helps:
• Shortening the OpenCL host code
• Plugging HWAs code into legacy code (target: CPU, APU and GPU)
• Transparently manage memory objects on the different HWAs
• Programmers focus on optimizing kernels
• Spend less time on software engineering
• Spend more time on the domain of expertise

Issam Said IWOCL 2016 04/20/2016 7/30

Outline

Related work

hiCL presentation

Reverse Time Migration on GPU and APU using hiCL

Conclusions and perspectives

Issam Said IWOCL 2016 04/20/2016 8/30

Outline

Related work

hiCL presentation

Reverse Time Migration on GPU and APU using hiCL

Conclusions and perspectives

Issam Said IWOCL 2016 04/20/2016 9/30

Related work
Quest for performance with less verbosity

 - performance +

 - verbosity +

Issam Said IWOCL 2016 04/20/2016 10/30

Related work
Quest for performance with less verbosity

 - performance +

 - verbosity +

Tools with good
performance/verbosity

threshold?

Issam Said IWOCL 2016 04/20/2016 10/30

Related work
Quest for performance with less verbosity

 - performance +

 - verbosity +

SimpleOpenCL
cf4ocl
oclkit

Boost.Compute
VirtCL

fortrancl

Issam Said IWOCL 2016 04/20/2016 10/30

Outline

Related work

hiCL presentation

Reverse Time Migration on GPU and APU using hiCL

Conclusions and perspectives

Issam Said IWOCL 2016 04/20/2016 11/30

hiCL presentation
In a nutshell

hiCL
• Yet another OpenCL wrapper that eases scientific programming
• Abstracts the memory manipulation complexity on HWAs
• Features:

• A simple C interface
• C++ compatible (header guards)
• A Fortran interface (ISO_C_BINDING Fortran 2003)

Issam Said IWOCL 2016 04/20/2016 12/30

hiCL presentation
Example: matrix multiplication

// allocate the matrices
float *a=(float)malloc(N*N*sizeof(float));
float *b=(float)malloc(N*N*sizeof(float));
float *c=(float)malloc(N*N*sizeof(float));
// initialize matrices a, b and c
init(a, b, c);
...
...
...
...
...
...
...
// run the matrix multiplication c+=a*b
sgemm(a, b, c, N);
...
...
...
// delete matrices a, b, and c
free(a, b, c);

Issam Said IWOCL 2016 04/20/2016 13/30

hiCL presentation
Example: matrix multiplication

// allocate the matrices
float *a=(float)malloc(N*N*sizeof(float));
float *b=(float)malloc(N*N*sizeof(float));
float *c=(float)malloc(N*N*sizeof(float));
// initialize matrices a, b and c
init(a, b, c);
...
...
...
...
...
...
...
// run the matrix multiplication c+=a*b
sgemm(a, b, c, N);
...
...
...
// delete matrices a, b, and c
free(a, b, c);

// allocate the matrices
float *a=(float)malloc(N*N*sizeof(float));
float *b=(float)malloc(N*N*sizeof(float));
float *c=(float)malloc(N*N*sizeof(float));
// initialize matrices a, b and c
init(a, b, c);
...
dev gpu1 = hicl_init(GPU | FIRST);
hicl_load("sgemm.cl", NULL);
hicl_mem_wrap(gpu1, a, N*N, READ_ONLY | HWA);
hicl_mem_wrap(gpu1, b, N*N, READ_ONLY | HWA);
hicl_mem_wrap(gpu1, c, N*N, READ_WRITE | HWA);
...
// run the matrix multiplication c+=a*b
hicl_run("sgemm", gpu1, a, b, c, N);
hicl_mem_update(c, READ_ONLY);
hicl_release();
...
// delete matrices a, b, and c
free(a, b, c);

Issam Said IWOCL 2016 04/20/2016 14/30

hiCL presentation
Example: matrix multiplication

standalone OpenCL with hiCL
Lines of code 1 525 280
Execution time2 0.479 s 0.491 s

1Includes hiCL code and the kernel code
2N=4096, gpu1=AMD HD7970

Issam Said IWOCL 2016 04/20/2016 15/30

hiCL presentation
A simplified OpenCL compute model

hiCL
agenthiCL base

OpenCL kernels

OpenCL devices

• Are exposed to the user:
• OpenCL kernels
• Selected OpenCL devices

• hiCL base:
• Encompasses the typical OpenCL work-flow

• hiCL agent:
• Lists of the used memory objects
• Devices/Kernels/Memory interactions

Issam Said IWOCL 2016 04/20/2016 16/30

hiCL presentation
Reducing the OpenCL verbosity

• hicl_init(flags)
• Only one call to initialize the OpenCL environment
• Only one context is supported
• One or multiple devices can be selected depending on flags
• Each device has a pre-defined number of command queues
• flags determine the user choices

• Default platform with default device: DEFAULT
• Choose the vendor: NVIDIA, AMD, ...
• Choose the device type: NVIDIA | GPU
• Even more: NVIDIA | GPU | FIRST
• Rule: what is not specified is default

• hicl_release()
• Releases the OpenCL context
• Automatically releases the registered memory objects and kernels

• hicl_info()
• Returns informations about the selected OpenCL resources

Issam Said IWOCL 2016 04/20/2016 17/30

hiCL presentation
Loading kernels

• hicl_load(file, options)
• Load ”.cl” files, compile OpenCL programs, extract kernels
• The hiCL agent register them for clean release afterwards
• options are passed to the OpenCL compiler

Issam Said IWOCL 2016 04/20/2016 18/30

hiCL presentation
Data consistency

• hicl_mem_wrap(hwa_name, ptr, size, flags)
• ptr is a regular pointer allocated by the user
• an OpenCL buffer is created and registered behind the curtains

• the buffer is associated to ptr
• size is the size of the buffer in number of elements
• flags determine where and how the OpenCL objects are created

Issam Said IWOCL 2016 04/20/2016 19/30

hiCL presentation
Data consistency

flags can combine:
hiCL memory flags description
CPU allocate the data on the system main

memory if not already allocated
HWA allocate the data on the HWA memory

and copy it from the CPU memory
ZERO_COPY the data is shared between the CPU and

the HWA
READ_ONLY the data is read-only
WRITE_ONLY the data is write-only
READ_WRITE the data is read-write
FLOAT, DOUBLE, INT ... determine the data type

DEFAULT = HWA | READ_WRITE | FLOAT

Issam Said IWOCL 2016 04/20/2016 19/30

hiCL presentation
Data consistency

In order to ensure data consistence between the host and the HWA:
• hicl_mem_update(ptr, flag)
• Prior to altering any hiCL memory (positions a dirty bit)
• Keep track of the changes issued by the host on the data
• flag can be:

• READ_ONLY: the host reads only the data
• WRITE_ONLY: the host modifies the data
• READ_WRITE: the host reads and then modifies the data

• The dirty bit is positioned if the flag is WRITE_ONLY or READ_WRITE
• If the bit is already positioned the data is updated from the HWA

Issam Said IWOCL 2016 04/20/2016 19/30

hiCL presentation
Running kernels

• hicl_run("kernel name", hwa_name, arg1, arg2, arg3 ...)

• Run "kernel name" on the device hwa_name
• C Variadic functions help passing arguments to the OpenCL kernels

• Not yet possible in the Fortran hiCL interface
• Related memory objects are:

• Automatically updated from the host if they are dirty
• Positioned dirty by the HWA if they are WRITE_ONLY or READ_WRITE

Issam Said IWOCL 2016 04/20/2016 20/30

hiCL presentation
Example: 3D finite difference stencil

// allocate the buffers
float *u=(float)malloc(N*N*N*sizeof(float));
float *v=(float)malloc(N*N*N*sizeof(float));
// initialize the buffer u
init(u);
...
...
...
...
...
...
// run the stencil 10 times
for(int i; i<10; i++)

fd_stencil(u, v, N, i);
...
...
// perform a snapshot (save to disk)
snapshot(v)
...
...
// delete matrices u, v
free(u, v);

Issam Said IWOCL 2016 04/20/2016 21/30

hiCL presentation
Example: 3D finite difference stencil

// allocate the buffers
float *u=(float)malloc(N*N*N*sizeof(float));
float *v=(float)malloc(N*N*N*sizeof(float));
// initialize the buffer u
init(u);
...
...
...
...
...
...
// run the stencil 10 times
for(int i; i<10; i++)

fd_stencil(u, v, N, i);
...
...
// perform a snapshot (save to disk)
snapshot(v)
...
...
// delete matrices u, v
free(u, v);

// allocate the buffers
float *u=(float)malloc(N*N*N*sizeof(float));
float *v=(float)malloc(N*N*N*sizeof(float));
// initialize the buffer u
init(u);
...
dev gpu1 = hicl_init(GPU | FIRST);
hicl_load("fd_stencil.cl", NULL);
hicl_mem_wrap(gpu1, u, N*N*N, READ_WRITE | HWA);
hicl_mem_wrap(gpu1, v, N*N*N, READ_WRITE | HWA);
...
// run the stencil 10 times
for(int i; i<10; i++)

hicl_run("fd_stencil", gpu1, u, v, N, i);
// only here a HWA-CPU memory transfer takes place
hicl_mem_update(v, READ_ONLY);
// perform a snapshot (save to disk)
snapshot(v)
hicl_release();
...
// delete the buffers
free(u, v);

Issam Said IWOCL 2016 04/20/2016 22/30

hiCL presentation
Example: 3D finite difference stencil

standalone OpenCL with hiCL
Lines of code3 638 328

Execution time4 1.571 s 1.582 s

3Includes hiCL code and the kernel code
4320×320×320 with 100 iterations on an AMD HD7970 GPU

Issam Said IWOCL 2016 04/20/2016 23/30

hiCL presentation
Overhead and performance

• Use red-black trees to index:
• the hiCL memory objects by the memory addresses (pointers)
• the hiCL kernels by names
• the hiCL devices by cl_device_id

• Enhance the memory objects and kernel lookups

Issam Said IWOCL 2016 04/20/2016 24/30

Outline

Related work

hiCL presentation

Reverse Time Migration on GPU and APU using hiCL

Conclusions and perspectives

Issam Said IWOCL 2016 04/20/2016 25/30

Reverse Time Migration (RTM)
• The reference imaging algorithm in the Oil and Gas industry
• Repositions seismic events into their true location in the subsurface

• Sub-salt and steep dips imaging
• Accurate (two-way wave equation)

• Requires massive compute resources (compute and storage)

Issam Said IWOCL 2016 04/20/2016 26/30

Implementing RTM using hiCL

• Use the 3D finite difference stencil kernel to solve the wave equation
• Use the HWA flag to run on the GPU and on the APU (explicit-copy)
• Use the HWA | ZERO_COPY flags to run on the APU (zero-copy)
• Use the hiCL Fortran interface (initial code is in Fortran)

Issam Said IWOCL 2016 04/20/2016 27/30

Implementing RTM using hiCL
Performance results

 4

 8

 16

 32

 1 2 3 4 5 6 7 8 9 10

G
F
l
o
p
/
s

K computations + 1 snapshot

Tahiti GPU Kaveri APU Kaveri APU (ZERO_COPY)

• Run the same host code while changing the memory flags
• The APU is more efficient than the GPU:

• Only for high frequencies of data retrieval (K < 3)
• The zero-copy feature enhances the performance for K < 3

Issam Said IWOCL 2016 04/20/2016 28/30

Outline

Related work

hiCL presentation

Reverse Time Migration on GPU and APU using hiCL

Conclusions and perspectives

Issam Said IWOCL 2016 04/20/2016 29/30

Conclusions and perspectives
Conclusions

• hiCL is a scientific programming friendly OpenCL wrapper
• Helps integrate OpenCL kernels into existing industrial codes
• Comes with C/C++ and Fortran interfaces
• Its main focus is to simplify the memory management
• Targets cutting-edge accelerators
• Release date (in few weeks on github):

• for release announcement please subscribe on
https://groups.google.com/d/forum/hicl

Perspectives
• Compliance with OpenCL 2.0
• Performance enhancement and overhead reduction
• Support Intel integrated GPU
• Support OpenCL images

Issam Said IWOCL 2016 04/20/2016 30/30

https://groups.google.com/d/forum/hicl

	Related work
	hiCL presentation
	Reverse Time Migration on GPU and APU using hiCL
	Conclusions and perspectives

