
(Nearly everything you need to know about)
optimising convolutional neural networks

on embedded platforms with OpenCL
Anton Lokhmotov [dividiti]

 Grigori Fursin [dividiti / cTuning foundation]

The 4th International Workshop on OpenCL (IWOCL)
21 April 2016, Vienna

Example: trends and challenges in auto industry

Trends
● Connected cars
● Natural user interfaces
● Autonomous and semi-

autonomous cars

Challenges
● Sophisticated algorithms
● Heterogeneous hardware
● Software must be both

reliable and efficient

Convolutional neural networks (CNNs)

● “Deep” (multi-layered) neural networks:
○ One or more convolutional layers
○ One or more fully connected layers
○ Normalisation, pooling, dropout...

● Take advantage of the 2D structure in images, hence
useful for classification, localisation, detection.

CNN example: AlexNet (A. Krizhevsky et al., 2012)

CNN training and deployment

● Training is typically done on clusters with NVIDIA GPUs.
● Deployment is spreading to mobile & embedded

platforms.
○ Can we deploy a CNN to achieve the required rate and

accuracy of recognition on a given platform?
○ Can we identify or build such a platform under given

constraints such as those on power, memory, price?
○ If all else fails, can we design another CNN by trading

off performance, accuracy and cost?

Optimising CNNs with OpenCL

OpenCL support in Caffe

● Caffe (caffe.berkeleyvision.org) is a popular deep learning
framework with a DSL for describing neural networks.

● Caffe’s master branch still only supports CUDA.
● AMD’s Caffe port uses OpenCL 1.2 and C++ templates.
● Caffe’s OpenCL branch is in active development led by

Fabian Tschopp.
○ ViennaCL: required.
○ clBLAS: optional.

Preliminary results for AlexNet on Chromebook 2

● Samsung Chromebook 2:
○ Quad-core ARM Cortex-A15 CPU @ 1900 MHz
○ Quad-core ARM Mali-T628 GPU @ 533 MHz
○ 2 GB RAM

● AlexNet w/ batch size of 128 using:
○ CPU w/ OpenBLAS 0.2.17
○ GPU w/ ViennaCL 1.7.1: ~10x slower than OpenBLAS
○ GPU w/ clBLAS 2.4: ~4x slower than OpenBLAS

SGEMM - FP32 matrix-matrix multiplication

● Convolution is implemented as matrix-matrix
multiplication.

● ~20,000 kernel enqueues, ~95% of which do SGEMM.
● Pros:

○ Single, regular routine to optimise.
● Cons:

○ Memory expansion (size + bandwidth implications).
○ Possibly awkward dimensions.
○ Is FP32 really necessary?

Crowdtuning ARM’s GEMM implementation

● ViennaCL performs FP32 GEMM @ <0.5 GFLOPS
● ARM’s implementation performs:

○ FP32 GEMM @ ~24 GFLOPS
○ FP16 GEMM @ ~45 GFLOPS
○ FP32/FP16 GEMM @ ~27 GFLOPS

cknowledge.org/repo/web.php?wcid=graph:crowdtune-sgemm-mali

Open call for collaborative optimisation

Collaborative optimisation of CNNs

Huge design and optimisation space
● Network design (state-of-the-art is ad-hoc).
● Network “compression” (50x storage reduction; 1% accuracy loss).
● Basic building blocks (GEMM, direct convolutions, FFT?).
● Data types (FP32, FP16, INT8?) + data layout transformations.

Continuous benchmarking and optimisation (see next slide)
● For speed, accuracy, size, energy consumption, etc.
● Across representative inputs, filter sizes, hardware platforms, etc.

Collective Knowledge: our humble solution

● Open framework + methodology (github.com/ctuning/ck).
● Combines reproducible experimentation with predictive

analytics to extract “valuable insights” from “raw data”.
● Stimulates collaboration, thus reduces costs and risks.
● Dramatically accelerates knowledge discovery and

optimization from many months to few days.
● cknowledge.org; bit.ly/ck-date16; bit.ly/ck-multiprog16;

arxiv.org/abs/1506.06256; dx.doi.org/10.3233/SPR-140396

Open call for collaborative benchmarking

The need for representative workloads

Benchmark [bench-mahrk]
● noun an abusive term for poorly constructed software, e.g. “this piece of

software is a benchmark”
● verb to create a meaningless set of measurements, e.g. “we benchmarked the

latest device”

Workload [wurk-lohd]
● noun a self-contained series of machine-executable actions formed from

production code that presents a use case of interest for performance analysis

-- “Benchmarks vs Zombie Apocalypse: a Comparison”
(ADAPT’16 keynote by Ed Plowman, ARM)

The need for collaborative design and optimization

● Ever increasing complexity (many things may go wrong).
● Large, diverse engineering groups (e.g. hardware

designers, system programmers, performance analysts).
● Ineffective collaboration wastes precious resources and

increases business risks.
● Users run tomorrow’s workloads on yesterday’s hardware.
● Too easy to ignore emerging workloads, as they simply do

not have the same status as benchmarks.

Community-sourced workloads

● Incentives for academia: demonstrable impact.
● Incentives for industry:

○ Software developers: similar to open-source software.
○ Hardware vendors:

■ Focussed effort on better design and optimisation.
■ Reduced effort on benchmarks.
■ Fair competition.

Our long term mission is to enable
efficient and reliable computing

everywhere.

Thank you!
anton@dividiti.com

CK modules (wrappers) with JSON API to abstract access to changing SW and HW

Unified input (JSON)

U
n

if
ie

d
 c

o
m

m
an

d

lin
e

in
te

rf
ac

e

Any tool (compiler,
lib, profiler, script …)

Expose design
and opt. choices

Expose features

Actions

Processing (Python)

Generated
files

Set environment
(tool versions,

system state, …)

Parse
and unify

output

Unified output (JSON)

Detected choices

Monitored behavior

Detected features

Monitored
 run-time state

Original
ad-hoc
input b = B(c , f , s) … … … …

JSON converted into CK vectors

Assemble experimental workflows from CK modules as LEGO(R) for agile prototyping, crowdsourcing and analysis

 CK repositories with cross-linked modules
(benchmarks, data sets, workflows, results)

Web service for crowdsourcing

cknowledge.org
Interdisciplinary

crowd

Choose
exploration

strategy

Generate choices (code
sample, data set, compiler,

flags, architecture …)

Compile
source
code

Run
code

Analyze
variation

Apply
Pareto
filter

Stat. analysis
and predictive

analytics

Apply
complexity
reduction

…

Ad-hoc
tuning
scripts

Collection of
CSV, XLS, TXT

and other files

Typical experimental workflow

Algorithm,
Program

Source to source
transformations,

Compilation

Data set Hardware State

Execution / Run-time system

GitHub, Bitbucket, ACM DL

$ ck pull repo:ctuning-programs
$ ck list program
$ ck list dataset
$ ck compile program:*susan –speed
$ ck run program:automotive-susan
$ ck crowdtune
 program:automotive-susan

Gradually convert to Collective Knowledge

CK entries with
Unique IDs

Acknowledgements

HiPEAC

CARP (FP7)

MILEPOST (FP6)

TETRACOM (FP7)

