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Example: trends and challenges in auto industry

Trends Challenges

e Connected cars e Sophisticated algorithms
e Natural user interfaces e Heterogeneous hardware
e Autonomous and semi- e Software must be both

autonomous cars reliable and efficient



Convolutional neural networks (CNNSs)

e “Deep”’ (multi-layered) neural networks:
o One or more convolutional layers
o One or more fully connected layers
o Normalisation, pooling, dropout...
e Take advantage of the 2D structure in images, hence
useful for classification, localisation, detection.
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CNN example: AlexNet (A. Krizhevsky et al., 2012)
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CNN training and deployment

e Training is typically done on clusters with NVIDIA GPUs.
e Deployment is spreading to mobile & embedded
platforms.
o Can we deploy a CNN to achieve the required rate and
accuracy of recognition on a given platform?
o Can we identify or build such a platform under given
constraints such as those on power, memory, price?
o If all else fails, can we design another CNN by trading
off performance, accuracy and cost?



Optimising CNNs with OpenCL
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OpenCL support in Caffe

Caffe (caffe.berkeleyvision.org) is a popular deep learning
framework with a DSL for describing neural networks.
Caffe’s master branch still only supports CUDA.

AMD'’s Caffe port uses OpenCL 1.2 and C++ templates.
Caffe’s OpenCL branch is in active development led by
Fabian Tschopp.

o ViennaCL: required.

o cIBLAS: optional.
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Preliminary results for AlexNet on Chromebook 2

e Samsung Chromebook 2:
o Quad-core ARM Cortex-A15 CPU @ 1900 MHz
o Quad-core ARM Mali-T628 GPU @ 533 MHz
o 2 GBRAM

e AlexNet w/ batch size of 128 using:
o CPU w/ OpenBLAS 0.2.17
o GPU w/ ViennaCL 1.7.1: ~10x slower than OpenBLAS
o GPU w/ cIBLAS 2.4: ~4x slower than OpenBLAS



Processor w/ library
B CPU w/ OpenBLAS 0.2.17
= GPU w/ ViennaCL 1.7.1
1 GPU w/clBLAS 2.4
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SGEMM - FP32 matrix-matrix multiplication
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Convolution is implemented as matrix-matrix
multiplication.

~20,000 kernel enqueues, ~95% of which do SGEMM.
Pros:

o Single, regular routine to optimise.

Cons:

o Memory expansion (size + bandwidth implications).
o Possibly awkward dimensions.
o Is FP32 really necessary?



Crowdtuning ARM’s GEMM implementation

e ViennaCL performs FP32 GEMM @ <0.5 GFLOPS
¢ ARM'’s implementation performs:

o FP32 GEMM @ ~24 GFLOPS

o FP16 GEMM @ ~45 GFLOPS

o FP32/FP16 GEMM @ ~27 GFLOPS

cknowledge.org/repo/web.php?wcid=graph:crowdtune-sgemm-mali

dv
dt



S
I

Open call for collaborative optimisation
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Collaborative optimisation of CNNs

Huge design and optimisation space

Network design (state-of-the-art is ad-hoc).

Network “compression” (50x storage reduction; 1% accuracy loss).
Basic building blocks (GEMM, direct convolutions, FFT?).

Data types (FP32, FP16, INT87?) + data layout transformations.

Continuous benchmarking and optimisation (see next slide)

For speed, accuracy, size, energy consumption, etc.

e Across representative inputs, filter sizes, hardware platforms, etc.
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Collective Knowledge: our humble solution

e Open framework + methodology (github.com/ctuning/ck).

e Combines reproducible experimentation with predictive
analytics to extract “valuable insights” from “raw data”.

e Stimulates collaboration, thus reduces costs and risks.

e Dramatically accelerates knowledge discovery and
optimization from many months to few days.

e cknowledge.orq; bit.ly/ck-date16; bit.ly/ck-multiprog16;
arxiv.org/abs/1506.06256; dx.doi.org/10.3233/SPR-140396




S
I

Open call for collaborative benchmarking
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The need for representative workloads

Benchmark [bench-mahrk]

e noun an abusive term for poorly constructed software, e.g. “this piece of
software is a benchmark”

e verb to create a meaningless set of measurements, e.g. “we benchmarked the
latest device”

Workload [wurk-lohd]

e noun a self-contained series of machine-executable actions formed from
production code that presents a use case of interest for performance analysis

-- “Benchmarks vs Zombie Apocalypse: a Comparison”
(ADAPT’16 keynote by Ed Plowman, ARM)



The need for collaborative design and optimization

e Ever increasing complexity (many things may go wrong).

e Large, diverse engineering groups (e.g. hardware
designers, system programmers, performance analysts).

e |neffective collaboration wastes precious resources and
Increases business risks.

e Users run tomorrow’s workloads on yesterday’s hardware.

e To00 easy to ignore emerging workloads, as they simply do
not have the same status as benchmarks.
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Community-sourced workloads

e |ncentives for academia: demonstrable impact.
e Incentives for industry:
o Software developers: similar to open-source software.
o Hardware vendors:
m Focussed effort on better design and optimisation.
m Reduced effort on benchmarks.
m Fair competition.
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Our long term mission is to enable
efficient and reliable computing
everywhere.
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Thank yout!

anton@dividiti.com




Typical experimental workflow -

| Algorithm, |_ Source to source [Data set] [Hardware] [ State ] Collection of
transformations, - " | CSV, XLS, TXT

\{ Execution / Run-time system }
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Assemble experimental workflows from CK modules as LEGO™® tor agile prototyping, crowdsourcing and analysis
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