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Example: trends and challenges in auto industry

Trends
● Connected cars
● Natural user interfaces
● Autonomous and semi-

autonomous cars

Challenges
● Sophisticated algorithms
● Heterogeneous hardware
● Software must be both 

reliable and efficient



Convolutional neural networks (CNNs)

● “Deep” (multi-layered) neural networks:
○ One or more convolutional layers
○ One or more fully connected layers
○ Normalisation, pooling, dropout...

● Take advantage of the 2D structure in images, hence 
useful for classification, localisation, detection.



CNN example: AlexNet (A. Krizhevsky et al., 2012)



CNN training and deployment

● Training is typically done on clusters with NVIDIA GPUs.
● Deployment is spreading to mobile & embedded 

platforms.
○ Can we deploy a CNN to achieve the required rate and 

accuracy of recognition on a given platform?
○ Can we identify or build such a platform under given 

constraints such as those on power, memory, price?
○ If all else fails, can we design another CNN by trading 

off performance, accuracy and cost?



Optimising CNNs with OpenCL



OpenCL support in Caffe

● Caffe (caffe.berkeleyvision.org) is a popular deep learning 
framework with a DSL for describing neural networks.

● Caffe’s master branch still only supports CUDA.
● AMD’s Caffe port uses OpenCL 1.2 and C++ templates.
● Caffe’s OpenCL branch is in active development led by 

Fabian Tschopp.
○ ViennaCL: required.
○ clBLAS: optional.



Preliminary results for AlexNet on Chromebook 2

● Samsung Chromebook 2:
○ Quad-core ARM Cortex-A15 CPU @ 1900 MHz
○ Quad-core ARM Mali-T628 GPU @ 533 MHz
○ 2 GB RAM

● AlexNet w/ batch size of 128 using:
○ CPU w/ OpenBLAS 0.2.17
○ GPU w/ ViennaCL 1.7.1: ~10x slower than OpenBLAS
○ GPU w/ clBLAS 2.4: ~4x slower than OpenBLAS







SGEMM - FP32 matrix-matrix multiplication

● Convolution is implemented as matrix-matrix 
multiplication.

● ~20,000 kernel enqueues, ~95% of which do SGEMM.
● Pros:

○ Single, regular routine to optimise.
● Cons:

○ Memory expansion (size + bandwidth implications).
○ Possibly awkward dimensions.
○ Is FP32 really necessary?



Crowdtuning ARM’s GEMM implementation

● ViennaCL performs FP32 GEMM @ <0.5 GFLOPS
● ARM’s implementation performs:

○ FP32 GEMM @ ~24 GFLOPS
○ FP16 GEMM @ ~45 GFLOPS
○ FP32/FP16 GEMM @ ~27 GFLOPS

cknowledge.org/repo/web.php?wcid=graph:crowdtune-sgemm-mali



Open call for collaborative optimisation



Collaborative optimisation of CNNs

Huge design and optimisation space
● Network design (state-of-the-art is ad-hoc).
● Network “compression” (50x storage reduction; 1% accuracy loss).
● Basic building blocks (GEMM, direct convolutions, FFT?).
● Data types (FP32, FP16, INT8?) + data layout transformations.

Continuous benchmarking and optimisation (see next slide)
● For speed, accuracy, size, energy consumption, etc.
● Across representative inputs, filter sizes, hardware platforms, etc.



Collective Knowledge: our humble solution

● Open framework + methodology (github.com/ctuning/ck).
● Combines reproducible experimentation with predictive 

analytics to extract “valuable insights” from “raw data”.
● Stimulates collaboration, thus reduces costs and risks.
● Dramatically accelerates knowledge discovery and 

optimization from many months to few days.
● cknowledge.org; bit.ly/ck-date16; bit.ly/ck-multiprog16; 

arxiv.org/abs/1506.06256; dx.doi.org/10.3233/SPR-140396



Open call for collaborative benchmarking



The need for representative workloads

Benchmark [bench-mahrk]
● noun an abusive term for poorly constructed software, e.g. “this piece of 

software is a benchmark”
● verb to create a meaningless set of measurements, e.g. “we benchmarked the 

latest device”

Workload [wurk-lohd]
● noun a self-contained series of machine-executable actions formed from 

production code that presents a use case of interest for performance analysis

-- “Benchmarks vs Zombie Apocalypse: a Comparison” 
(ADAPT’16 keynote by Ed Plowman, ARM)



The need for collaborative design and optimization

● Ever increasing complexity (many things may go wrong).
● Large, diverse engineering groups (e.g. hardware 

designers, system programmers, performance analysts).
● Ineffective collaboration wastes precious resources and 

increases business risks.
● Users run tomorrow’s workloads on yesterday’s hardware.
● Too easy to ignore emerging workloads, as they simply do 

not have the same status as benchmarks.



Community-sourced workloads

● Incentives for academia: demonstrable impact.
● Incentives for industry:

○ Software developers: similar to open-source software.
○ Hardware vendors:

■ Focussed effort on better design and optimisation.
■ Reduced effort on benchmarks. 
■ Fair competition.



Our long term mission is to enable 
efficient and reliable computing

everywhere.





Thank you!
anton@dividiti.com



CK modules (wrappers) with JSON API to abstract access to changing SW and HW

Unified input (JSON)

U
n

if
ie

d
 c

o
m

m
an

d
 

lin
e 

in
te

rf
ac

e

Any tool (compiler, 
lib, profiler, script …)

Expose design 
and opt.  choices 

Expose features 

Actions

Processing (Python)

Generated 
files

Set environment
(tool versions, 

system state, …)

Parse 
and unify 

output
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Original 
ad-hoc 
input b       = B( c      , f       , s       )  … … … …

JSON converted into CK vectors

Assemble experimental workflows from CK modules as LEGO(R) for agile prototyping, crowdsourcing and analysis

 CK repositories with cross-linked modules
(benchmarks, data sets, workflows, results)

Web service for crowdsourcing
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Typical experimental workflow

Algorithm,
Program

Source to source 
transformations, 

Compilation

Data set Hardware State

Execution / Run-time system

GitHub, Bitbucket, ACM DL

$ ck pull repo:ctuning-programs
$ ck list program
$ ck list dataset
$ ck compile program:*susan –speed
$ ck run program:automotive-susan
$ ck crowdtune
         program:automotive-susan

Gradually convert to Collective Knowledge 

CK entries with 
Unique IDs
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