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Intel® Processor Graphics?
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Intel® Core™ M:

Intel® 

Processor Graphics 

Gen8 

Graphics, Media, 

& Compute

Intel Processor Graphics is a key Compute Resource 

• Intel® Processor Graphics: 

3D Rendering, Media, and Compute

• Discrete class performance but… 

integrated on-die for true heterogeneous 

computing, SoC power efficiency, and 

a fully connected system architecture

• Some products are near TFLOPS performance

• Highly threaded, data parallel compute engine
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Example Chip Level Architecture:  Intel® Core™ M

Many different processor products, 

with different processor graphics 

configs

Multiple CPU cores, shared LLC, 

system agent

Multiple clock domains, target power 

where it’s needed

Intel® Processor Graphics 

Gen8 

Graphics, Compute, & Media

Shared

LLC 

CPU 

core

CPU 

core
System

Agent
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EU: The Execution Unit
j Gen8: Seven hardware threads per EU

k 128 general purpose registers per thread

• 4K registers/thread or 28K/EU

• Each register : 32 bytes wide

• 8 x 32b floats, 8 x 32b integers

• 16 x 16b half-floats, 16 x 16b shorts

l Thread Arbiter picks instructions to run 

from runnable thread(s)

• Each cycle: can co-issue multiple instructions, 
from up to four different threads

• Dispatches instruction to appropriate functional unit

jk l

R0… …R127

The fine grain threaded nature of the EUs ensures continuous streams of ready to 
execute instructions, while also enabling latency hiding of longer operations such as 

memory scatter/gather, sampler requests, or other system communication.

Memory/Sampler
access
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Subslice: An Array of 8 EU’s

Each: Subslice

j Eight Execution Units

k Local Thread Dispatcher & Inst $

l Texture/Image Sampler Unit:

• Includes dedicated L1 & L2 caches

• Dedicated logic for dynamic texture 
decompression, texel filtering, texel addressing 
modes

• 64 Bytes/cycle read bandwidth

m Data Port:

• General purpose load/store memory unit

• Memory request coalescence

• 64 Bytes/cycle read & write bandwidth

j

k

l
m
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Slice: 3x Subslices Each Slice: 3 x 8 = 24 EU’s
• 3 x 8 x 7 = 168 HW threads/slice

j Dedicated interface for every sampler 
& data port

k Level-3 (L3) Data Cache:

• Typically 384 KB / slice, though 
Allocations are app reconfigurable 

• 64 byte cachelines

• Monolithic, but distributed cache 

• 64 bytes/cycle read & write

l Shared Local Memory:

• 64 KB / subslice

• More highly banked than rest of L3

m Hardware Barriers, 32bit atomics

j

k

m l
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Product Configuration Examples

24 EUs 48 EUs12 EUs



OpenCL* Kernels run on an Execution Unit 

(EU)

Each EU is a Multi-Threaded SIMD Processor

Up to 7 threads per EU

 128 x 8 x 32-bit registers per thread

Up to 8, 16, or 32 OpenCL* work items per 

thread (compiler-controlled)

 “SIMD8”, “SIMD16”, “SIMD32”

 SIMD8  More Registers

 SIMD16 and SIMD32  Better Efficiency

11

OpenCL™ Execution Model maps to Intel® Graphics 

Architecture 



OpenCL™ Execution Model maps to Intel® Graphics 

Architecture 
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Memory Hierarchy and Sharing  
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• Intel® Processor Graphics has full 
performance access to system memory

• “Zero Copy” CPU & Graphics data 
sharing

• Shared Virtual Memory – new in Gen8

Facilitated by OpenCL™ 2.0 Shared 
Virtual Memory:
 Coarse & fine grained SVM
 CPU & GPU atomics as synchronization 

primitives
 System SVM as soon as OSVs are 

ready
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OpenCL™ Code Builder

Getting Started Build Debug Tune

Identify
opportunities for 
accelerations

Quickly build 
OpenCL code

Debug your code –
both functional 
and performance

Tune the 
application

 Code Sample
 Case Studies
 Identify performance 

bottlenecks in applications
 Redesign algorithms

* This stage is largely manual

 Kernel development framework
 OpenCL 2.0 development 

environment
 Pre-defined projects
 IDE integration – auto 

compilation, syntax highlighting
 Offline compilation with errors 

reports

 API level debugging
 API calls and commands tracing 

and analysis
 Step-by-step kernel debugging 

(preview) 
 Kernel statistics views
 Memory debug

 Application level profiling
 Platform level timeline view
 Platform performance counters
 Correlate CPU & GPU activities
 Kernel hot-spots analysis

Carry-on performance optimizations in each step of the development

A comprehensive developers’ tool-chain for OpenCL™ and Intel® Graphics compute

Supports Each State of the OpenCL™ Code Development



OpenCL™ Code Builder
What Is New in Version 2015?
OpenCL™ Code Builder fully integrated in Intel’s development suites
• Available with Intel® Integrated Native Developer Experience (Intel® INDE)
• Available with Intel® Media Server Studio
• Advanced new editing and debugging features with Microsoft* Visual Studio plug-in 
• Free Windows & Android development with Intel INDE starter edition

Commercial OpenCL 1.2 Linux* driver for Intel® Graphics
• Available with Intel® Media Server Studio

OpenCL 2.0 on 5th Generation Intel® Core™ Processors
• Fine-grained shared virtual memory (SVM) support
• Support Intel® HD Graphics 5500/6000 and Intel® Iris™ Graphics 6100
• Available with Intel® Integrated Native Developer Experience (Intel® INDE)
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• Intel® SDK for OpenCL™ Applications is now available as OpenCL™ Code Builder
• All SDK’s capabilities are now integrated into Intel’s suites for developers through the OpenCL™ Code Builder.
• With new suite support, developer now gets OpenCL Code Builder, profiling features, and interoperable products in a single place.
• A standalone Intel® Code Builder for OpenCL™ API is available for support configurations that are not available with the integrated suites 

• E.g Ubuntu* for CPU, Intel® Xeon Phi™ coprocessor, and more

Where did The Intel® SDK for OpenCL™ Applications go?



Intel’s Portfolio of Tools  for OpenCL™ Development
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Intel® INDE
- For mobile and PC client applications
- Create & Debug with OpenCL™ Code Builder
- Analyze with INDE Analyze capabilities
- Supports:

- OpenCL 1.2 & 2.0
- Windows*, Android*
- Intel® Core™ & Atom™
- Intel® Graphics Compute

Intel® Media Server Studio
- For enterprise media solution
- Create & Debug with OpenCL™ Code Builder
- Analyze with Intel® VTune™ Amplifier XE
- Supports:

- OpenCL 1.2 & 2.0
- Linux*, Windows*
- Intel® Xeon® E3 & Core™ i7
- Intel® Graphics Compute

Intel continues to support Intel Xeon® E5 & E7, and Intel Xeon Phi through a standalone
Intel® Code Builder for OpenCL™ API

Maximize the power of the platform with OpenCL™ and Intel® Graphics Compute
• Build high-performance  applications 
• Optimizing tasks with standard APIs and best available compute engines
• Tap into a comprehensive developers’ tool-chain, IDE integration, and more. 

Don’t leave performance on the platform! 



Which Suite To Download?
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I

Tool suite

Intel® INDE

Starter edition: free

Intel® Media Server Studio

Essential edition: $499

Intel® Code Builder 
for OpenCL™ API for 

Linux*
free

Supported devices Intel® Graphics (GPU) X X

Intel® processors (CPU) X X X

Intel® Xeon Phi™ coprocessors X

Target OS Windows* X X

Android* X

Linux* X X

Host OS 
(Development 
environment)

Windows* X X

Android*

Linux* X X

IDE Integration Microsoft Visual Studio* X X

Eclipse* X X

Standalone UI X X X

Intel Confidential

Select the tool that best fit your target applications and OS matrix:
- PC & Mobile applications  Use Intel® INDE
- Enterprise media applications  Use Intel® Media Server Studio
- HPC apps  Use Intel® Code Builder for OpenCL™ APIs



Tools for OpenCL™ Development

The Development Flow

When I 

CREATE
my OpenCL Code

When I first ANALYSE 
my Application

When I 

TUNE 
my entire system

Don’t leave performance on the table! 
Get optimized code faster - use performance tools during each step of the development

OpenCL™ Code 
Builder

System 
Analyzer

Platform 
Analyzer

Intel® 
VTune™ 
Amplifier

Availability Intel® INDE 
Starter

Intel® INDE 
Pro

Intel® Media 
Server Studio\

Intel® VTune
Amplifier XE

OpenCL™ Code Builder V V V

System And Platform Analyzer V

Intel® VTune Amplifier XE
(with Platform Analyzer features)

V V



OpenCL™ Code Builder
Development Tools Features

20



OpenCL™ Code Builder - Features and Support Matrix
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Development Environment

VISUAL STUDIO* ECLIPSE* STANDALONE FEATURES:
PREVIEW 
FEATURE

● ● ● OpenCL™ 1.2 support

Create 
& 

Build

● ● OpenCL™ 2.0 support with Intel® Core™ M and 5th Gen Intel® Core™ Processors

● ● OpenCL™ 2.0 development environment on previous CPU generations

● ● ● Kernel Development Framework

● New OpenCL Project wizard 

● ● ● Syntax highlighting

● ● ● Code auto completion

● ● ● Offline compilation

● ● ● SPIR* 1.2 generation and consumption

● Remote development for Android*

● API-level debugging

Debug

● Image and memory view

● API calls tracing

● Step-by-step debugging for CPU kernels

● Step-by-step debugging for GPU kernels ●

● ● API calls and memory command analysis ●

Analyze
● Kernel occupancy and  latency analysis ●



Code snippets provided in this presentation are for illustrative purposes 

only. Intel disclaims any and all implied or express warranties 

associated with the code snippets, and any and all use of such code 

snippets is at the sole discretion and exclusive risk of the user.

Code Editing and Compiling

 IDE integration (Visual Studio 
and Eclipse)

 Offline compilation and binary 
generation of OpenCL™ kernels 

 Syntax checking and compile 
error reports. 

 Project wizards

 Offline build for the Android* 
target. 

22



Kernel Development Framework
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 Create and build OpenCL Kernels 
on standalone environment

 Assign variables to the kernel and 
check its correctness

 Show the input and output values

 Analyze kernel’s performance 
with “What-if” analysis on work 
group sizes

 Remote development on Android 
devices



API Level Debugging
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 Seamless debugging of OpenCL™ 
API calls, objects, and queues

 Enables monitoring and 
understanding the OpenCL
environment of an application 
throughout execution

 OpenCL API calls tracing

 Images and memory objects view
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Objects Tree View
Explore all OpenCL Objects 

in memory and their 
properties

Commands Queue View
Examine commands queue 
status and their commands’ 

state

Problems View
Look for hints for potential 

error or warnings during 
execution

Trace View
Trace application’s OpenCL API calls 

and their return values

Properties View
View the properties of the 

slected OpenCL objects

Image View
Show the visualized content of 

OpenCL Images Objects

Date View
Show the content of OpenCL Memory 

Objects (Buffers + Images)



Kernel Level Debugging on the CPU
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 Step into Kernels running on the CPU

 Supports existing debugging 
capabilities

 Breakpoints

 Memory view

 Watch variables – including OpenCL
types like float4, int4, etc.

 Call stack

 Auto and local variables views



Code snippets provided in this presentation are for illustrative purposes 

only. Intel disclaims any and all implied or express warranties 

associated with the code snippets, and any and all use of such code 

snippets is at the sole discretion and exclusive risk of the user.

Code Builder – Application Analysis

 Host level analysis

• Identify performance bottlenecks in 
the API calls

• Optimize the host code to reduce API 
execution time and kernels run time

 Kernel level analysis

• Optimize the kernel code to get better 
utilization and reduce the latency

• Measure compute metrics (latency, 
and utilization)

27



Demo Session
Introduction with OpenCL™ Code Builder

A Walkthrough

28



Create, Build and Analyze my OpenCL kernel with 
Kernel Development Framework

Debug my OpenCL host application and   Kernel 
with OpenCL® Debugger

Analyze and Optimize your OpenCL application and 
kernel code with OpenCL® Code Analyzer

Code Builder Walkthrough Session Content

Building

Debugging

Performan
ce Analysis



Create, Build and Analyze my OpenCL kernel with 
Kernel Development Framework

Debug my OpenCL host application and   Kernel 
with OpenCL® Debugger

Analyze and Optimize your OpenCL application and 
kernel code with OpenCL® Code Analyzer

Code Builder Walkthrough Session Content

Building

Debugging

Performan
ce Analysis



Create, Build and Analyze your OpenCL Kernel
with Kernel Development Framework

Our case study: Sobel Filter Kernel

- Edge detection algorithm

- Discrete differentiation operator, computing an approximation of the 
gradient of the image intensity function

Source 

Image

horizontal and vertical 

derivative approximations



Create, Build and Analyze my OpenCL kernel with 
Kernel Development Framework

Debug my OpenCL host application and   Kernel 
with OpenCL® Debugger

Analyze and Optimize your OpenCL application and 
kernel code with OpenCL® Code Analyzer

Code Builder Walkthrough Session Content

Building

Debugging

Performan
ce Analysis



Debug OpenCL host applications and kernel code
with OpenCL Debugger

Our case study: Sobel Filter App

Write Image Read ImageNDRange Kernel

In-Order Command Queue

InPtr

OutPtr

Write Image Read Image

NDRange Kernel

OutPtr

In-Order Command Queue 1

In-Order Command Queue 2cl_event

CPU Device

GPU Device



Create, Build and Analyze my OpenCL kernel with 
Kernel Development Framework

Debug my OpenCL host application and   Kernel 
with OpenCL® Debugger

Analyze and Optimize your OpenCL application and 
kernel code with OpenCL® Code Analyzer

Code Builder Walkthrough Session Content

Building

Debugging

Performan
ce Analysis



Analyze OpenCL host applications and kernel code
with OpenCL Code Analyzer

1st case study: Host level optimization on trivial “Hello World” application

- Serial execution of 4 basic compute workloads (OpenCL kernels)

- Non optimized host code

- 4 optimization step

kernel1 kernel2 kernel3 kernel4

[C]=[A]+[B] [C]=[A]-[B] [C]=[A]|[B] [C]=[A]&[B]
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Regular application (c/c++)

main () 

{

foo();

…

foo();

…

…

bar();

…

…

bar();

…

foo();

}

foo () 

{

for (…)

{

…

}

}

bar() 

{

for (…)

{

…

}

}

clGetPlatformIDs
clGetDeviceIDs
clCreateContextFromType
clCreateCommandQueue
clCreateProgramWithSource
clBuildProgram
clCreateBuffer

clCreateKernel
SetKernelArguments
clEnqueueNDRangeKernel

clReleaseMemObject
clReleaseProgram
clReleaseCommandQueue
clReleaseContext
clReleaseDevice

OpenCL Application

// New OpenCL implementation

foo () 

{

// OpenCL initialization

// Run kernel

…

// Release OpenCL objects

}

bar() 

{

// OpenCL initialization

// Run kernel

…

// Release OpenCL objects

}

// New OpenCL implementation

// OpenCL initialization

foo () 

{

// Run kernel

…

}

bar() 

{

// Run kernel

…

}

// Release OpenCL objects

OpenCL Application (optimized)

1st optimization – Wrong API Usage
Avoid redundant usage of API calls

clBuildProgram calls takes ~40% of total execution time
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Regular application (c/c++)

main () 
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…

foo();

…
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bar();

…

…

bar();

…
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{
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}

}

bar() 

{
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OpenCL Application

// New OpenCL implementation

foo () 

{

// OpenCL initialization

// Run kernel

…

// Release OpenCL objects

}

bar() 

{

// OpenCL initialization

// Run kernel

…

// Release OpenCL objects

}

// New OpenCL implementation

// OpenCL initialization

foo () 

{

// Run kernel

…

}

bar() 

{

// Run kernel

…

}

// Release OpenCL objects

OpenCL Application (optimized)

1st optimization – Wrong API Usage
Avoid redundant usage of API calls

clBuildProgram calls takes ~40% of total execution time
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2nd optimization - Memory Access Patterns
Row memory access VS column memory access

const int id = y * width + x;

local = buffer[id];

size_t localWorkSize[2] = {1, 16}; 

clEnqueueNDRangeKernel(…, localWorkSize,…);

0
1

0 1

0,0 1,0 15,0

Y is constant for all work-items in the work-group. Id increases monotonically 
across the entire work-group, which means that the read operations comes from 
a single L3 cache line (16 x sizeof(int) = 64 bytes). 

0 1 . . . 15

LocalWorkSize[2] = {16,1}

{ x , y } = 

y * width + x =  

0
1

0 1

15

30

Width = 1024

LocalWorkSize[2] = {1,16}

0,0 0,1 . . . 0,15

Y is different for every work-item in the work-group; every read operation comes 
from a different cache line for every work-item in the work-group

0 1024 . . . 15360

{ x , y } = 

y * width + x =  
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2nd optimization - Memory Access Patterns
Row memory access VS column memory access

const int id = y * width + x;

local = buffer[id];

size_t localWorkSize[2] = {1, 16}; 

clEnqueueNDRangeKernel(…, localWorkSize,…);

0
1

0 1

0,0 1,0 15,0

Y is constant for all work-items in the work-group. Id increases monotonically 
across the entire work-group, which means that the read operations comes from 
a single L3 cache line (16 x sizeof(int) = 64 bytes). 

0 1 . . . 15

LocalWorkSize[2] = {16,1}

{ x , y } = 

y * width + x =  

0
1

0 1

15

30

Width = 1024

LocalWorkSize[2] = {1,16}

0,0 0,1 . . . 0,15

Y is different for every work-item in the work-group; every read operation comes 
from a different cache line for every work-item in the work-group

0 1024 . . . 15360

{ x , y } = 

y * width + x =  



Global Memory 
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3rd optimization - Host to Device Transfers

• clCreateBuffer

• CL_MEM_USE_HOST_PTR flag enables the application 

to share its memory allocation with the OpenCL™ runtime 

implementation, and avoid memory copies of the buffer.

Buffer created 
by malloc()

Buffer created by clCreateBuffer
(…, CL_MEM_COPY_HOST_PTR,…)COPY

clCreateBuffer(..., CL_MEM_COPY_HOST_PTR, ...);

...

clEnqueueReadBuffer(...);

CPU GPU

Global Memory 

Buffer created 
by malloc()

Buffer created by clCreateBuffer
(…, CL_MEM_COPY_HOST_PTR,…)

CPU GPU



Global Memory 
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3rd optimization - Host to Device Transfers

• clCreateBuffer

• CL_MEM_USE_HOST_PTR flag enables the application 

to share its memory allocation with the OpenCL™ runtime 

implementation, and avoid memory copies of the buffer.

Buffer created 
by malloc()

Buffer created by clCreateBuffer
(…, CL_MEM_COPY_HOST_PTR,…)COPY

clCreateBuffer(..., CL_MEM_COPY_HOST_PTR, ...);

...

clEnqueueReadBuffer(...);

CPU GPU

Global Memory 

Buffer created 
by malloc()

Buffer created by clCreateBuffer
(…, CL_MEM_COPY_HOST_PTR,…)

CPU GPU



Host level optimization – Summary

1st Optimization 2nd Optimization 3rd Optimization

X2 

X1.151330 ms

968 ms

1187 ms X1.2 

X2.35 

On Intel® Iris™ Graphics 5100

2568 ms

Avoid redundant usage of 
API calls

Row memory access VS 
column memory access

Host to Device Transfers



Analyze OpenCL host applications and kernel code
with OpenCL Code Analyzer

2nd case study: Kernel level analysis with:

- Occupancy View – how much the GPU 
is busy

Higher is better

- Latency View - execution time of each 
kernel instruction (especially memory) 

Lower is better



 Free download at: intel.com/software/opencl

 Follow us: @IntelOpenCL

 Contact as through our forum: 

http://software.intel.com/en-us/forums/opencl

Try related products

 Native client development with Intel® Integrated Native Developer 

Experience (Intel® INDE) 

 Performance tuning with the Intel® VTune™ Amplifier XE

 Media performance with the Intel® Media SDK 

Download, Learn, Code, Optimize

What is available online?

 Free Downloads

 Code Samples

 Documentation

 Tech Articles

 Reviews

 Forums and Support

 Webinars

44



Agenda
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• Intel® OpenCL™ Code Builder
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What We Are Going To Talk About

46

• Introduction into GPU Analysis for OpenCL* applications with Intel® VTune™ 

Analyzer XE

• New features in recent releases

• Case study: an OpenCL* kernel optimization

• Summary / Questions
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• Intel VTune Amplifier is a powerful performance debugging tool with mature 

GPU profiling capabilities

• Shows host and GPU activities correlated

• OpenCL kernel queue graphical view

• Allows to see kernels and their characteristics

• Goes down to hardware level by showing both GPU and CPU hardware 

metrics

GPU Analysis Features Overview

48



• “Overview”: useful for Graphics and Compute and indeed, provides an 

overview

• “Compute Basic”: details about compute as Occupancy, IPC, FPUs Active etc.

New!

49

Metric Presets For Intel® Graphics Analysis

• “Compute Extended”: Memory Access and Coalescence metrics
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Shows GPU blocks & 
CPU utilization  and 
Uncore bandwidth 
while specific GPU task 
was running

Architecture DiagramNew!
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• Convolves the image with Gaussian 

function

• Reduces noise and details

• Good representative 

of image processing kernels 

Original Image

Blurred Image 

Edge Detection on Original Image 

Edge Detection on Blurred Image 

Source: http://en.wikipedia.org/wiki/Gaussian_blur

The sample matrix, produced by sampling the Gaussian filter 

kernel (σ = 0.840896) at the midpoints of each pixel and then 

normalizing: 

Case Study: Gaussian Blur Kernel

http://en.wikipedia.org/wiki/Gaussian_blur


• Uses Sampler 

• Processes one pixel per a work-item

X, y

table_width

blur_radius

Naïve implementation



What Can We Learn From The Tool?

* Code source by Intel

EU Stalled ~ 25% → EUs are waiting 25% of the time



Optimization Considerations 

25% stalls due to Sampler accesses 

However: 

 regular access pattern allows using plane buffers instead of images

(memory buffers are faster to access than Sampler)

 can use Gaussian Blur’s separability property 

 make two kernels (instead of one): horizontal and vertical pass

 access image data from linear buffers

X, y

table_width

blur_radius



Gaussian Blur: Two Passes

55

Taking advantage of Gaussian Blur’s separable property 



Memory Access Pattern
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Read/Write from/to memory by 4 bytes 

Optimizes memory access and makes it coalesced

4 5 6 70 1 2 3 12 13 14 158 9 10 11

x y z w

64 bytes == 1 cache line (!)

a working item

SIMD16 thread



Two Passes. Is more speed-up possible? 
 EU↔L3 memory bandwidth is far from its peak value (43 + 28 = 71 vs 128 GB/s for 2 

slices @ 1 GHz)

 Process more pixels in one work item

Use available memory bandwidth to speed up the kernels



Gaussian Blur Optimization Steps
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What To Optimize For
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Optimization Target Metric(s) to Watch Traps 

Memory Throughput Untyped Read/Write →
for 128 GB/s at 1 GHz  per 1 slice

Non-coalesced accesses 
might consume additional 
bandwidth 

Occupancy Kernels with too small work for 
working item
EU Idle      → 0 %
EU Stalled → 0 %

More EU threads is not 
good when the working 
item is doing too small 
work

Compute Throughput EU Active  → 100 %
EU Stalled → 0 %
EU Idle      → 0 %

Redundant calculation 
might elevate EUActive 
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Operating Systems Support

Feature Window* Linux* Android*

GPU usage, per engine √ √ √

GPU usage items attributed to OpenCL √ √

GPU Hardware Metrics √ √

Media Server Studio CPU-side APIs support √

OpenCL 1.2 support √ √

OpenCL 2.0 basic support √ √

GPU Architecture Diagram √



Summary
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Use VTune to analyze OpenCL* applications running on Intel® Graphics

 Watch for hot kernels and possible inefficient CPU↔GPU interactions 

Optimize Hottest OpenCL* Kernels using Intel Graphics Hardware Metrics

Watch for 

 Memory Access Pattern

 Occupancy

 EU utilization

VTune helps use full potential of Intel Iris Graphics with your OpenCL* application



Agenda

• Intel® Iris™ Graphics Overview

• Intel® OpenCL™ Code Builder

• Intel® VTune™ Amplifier 2015

• Optimization Techniques and Examples ---- Presenter: Anita Banerjee

• OpenCL™ 2.0 Overview

• Summary / Questions
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Optimization Techniques and Examples

• Host Side Optimizations

• Memory Matters

 Host to Device

 Device Access

• Compute Characteristics

 Maximizing Gflops

• Device Side Optimizations

63



OpenCL* Host Side Optimizations

• Pre-compile kernels if possible

• Compile once and save binary – load at app start

• Enqueue multiple commands in queue

• Use in-order queues

• No need to wait or “clFinish()” on every kernel

• Allows OpenCL runtime to minimize overhead

• Use null for LWS 

• Let driver to choose the best LWS for you if you are not sure



Optimizing Host to Device Transfers
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Host (CPU) and Device (GPU) share the same physical memory

For OpenCL* buffers:

 No transfer needed (zero copy)!

 Allocate memory aligned to a cache line (64 bytes) and multiple of 4KB (page size) 

 Create buffer with system memory pointer and  CL_MEM_USE_HOST_PTR

 Use clEnqueueMapBuffer() to get pointer to access data from CPU

 Use clEnqueueUnmapMemObject() to give the pointer back to GPU before using at kernels.

For OpenCL* images:

 Use cl_khr_image2d_from_buffer Ext.

 http://www.khronos.org/message_boards/viewtopic.php?t=5545

http://www.khronos.org/message_boards/viewtopic.php?t=5545


Adjacent work items should ideally read/store adjacent memory locations

__global and __constant Memory Access Examples

x = data[ get_global_id(0) ]

 One cache line, full bandwidth
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Cache Line n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cache Line n + 1

Global ID:

Cache Line n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cache Line n + 1

Global ID:

Cache Line n

0 1 2 ...

Cache Line n + 1 Cache Line n + 2 ...

Global ID:

x = data[ get_global_id(0) * 2 ]

 Strided, half bandwidth

x = data[ get_global_id(0) * 16 ]

 Very strided, worst-case

Especially avoid the work items reading/storing skipping memory or vertically



__global and __constant Memory
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Global memory access performance depends of size and alignment.

Best: Load/Store 16 bytes of data at a time, starting from a cache line aligned 

address

OK: Load/Store at least 4 bytes of data at a time, starting from a 4 bytes aligned 

address



__local Memory



__private Memory

Compiler can usually allocate Private Memory in the Register File

 Even if Private Memory is dynamically indexed

 Good Performance

Fallback: Private Memory allocated in Global Memory

 Accesses are very strided

 Bad Performance



Intel® HD Graphics Memory Hierarchy

Main memory
Shared Local 

memory (SLM)
Intel® HD Graphics Register File

Global/ConstantLocalPrivate

Longest latencyMinimal latency Low latency



Use Built-in Functions

dp = V0.x * V1.x + V0.y * V1.y

+ V0.z * V1.z + V0.w + V1.w;

dp = dot(V0, V1);

C = sqrt(A * A + B * B); C = hypot(A, B);

cl = 

fmin(fmax(X,minVal),maxVal);

cl = clamp(X, 

minVal, maxVal);
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Allow the Compiler to Optimize Better



Trade Accuracy vs. Speed
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a[id]  = sin(a[id]);
a[id]  = 

native_sin(a[id]);

c[id] += a[id]*b[id];
c[id]  = 

fma(a[id],b[id],c[id]);

• Use mad()/fma(): Either explicitly with built-ins or via -cl-mad-enable build option
• Use native_* versions of trigonometry functions 

or compile with –cl-fast-relaxed-math build option
• floats processing is about ~2x of throughput than int – HD5200 and older



Avoid Byte/Short Load and Stores 
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__kernel void k(global uchar* a, global uchar* b)

{

int gid = get_global_id(0);

a[gid] *= b[gid];

. . .

}

__kernel void k(global uint4* a, global uint4* b)

{

int gid = get_global_id(0);

a[gid] *= b[gid];

. . . 

}

Avoid byte or short loads.  Load and store in greater chunk
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Shared Virtual Memory (Pre-history)

Builds upon “shared physical memory” (SPM) feature
 SPM established with OpenCL 1.0 => CL_MEM_USE_HOST_PTR flag
 Supported on Intel 3rd Gen processors with HD Graphics
 Eliminated buffer copy costs, aka “zero-copy” buffers*
 Buffer must have 4k byte alignment and size divisible by 64

SPM available since 
2011, but many 

OpenCL apps still not 
using it…

* See “Getting the Most from OpenCL™ 1.2: How to Increase Performance by Minimizing Buffer Copies on Intel® Processor Graphics”

https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics


Shared Virtual Memory

Allows de-referencing of host-

allocated virtual memory 

pointers directly on the GPU

Enables GPU offload 
of pointer-oriented 

algorithms
(e.g. using trees or 

linked lists)

SVM buffer SVM buffer



3 types of SVM

Coarse-grain buffers (Intel 5th Gen Processors w/ HD Graphics 5300)
 SVM buffers are mapped to either CPU or GPU at any given time
 Access is controlled by clEnqueueMap/Unmap commands

Un-mapped state:  Only 
GPU can access buffer



3 types of SVM

Coarse-grain buffers (Intel 5th Gen Processors w/ HD Graphics 5300)
 SVM buffers are mapped to either CPU or GPU at any given time
 Access is controlled by clEnqueueMap/Unmap commands

Mapped state:  
Only CPU can 
access buffer



3 types of SVM

Fine-grain buffers (Intel 5th Gen Processors w/ HD Graphics 5500+)
 SVM buffers can be accessed from either CPU or GPU at any time
 Can use atomics to avoid ‘race’ conditions

Check if device supports (CL_DEVICE_SVM_FINE_GRAIN_BUFFER & 
CL_DEVICE_SVM_ATOMICS flags)

Fine grain SVM 
buffer allows 
simultaneous 
access from 
CPU & GPU



3 types of SVM

Fine-grain system memory (Future Intel Processors)
 CPU & GPU can share anything allocated from the C-runtime ‘heap’ 

(i.e. malloc/new)
 Ideal end-state – requires convergence of OS, H/W, and API support

Full CPU/GPU 
memory 

coherency for 
all heap 

allocations



Shared Virtual Memory – API Basics

Allows host-allocated VM pointers to be de-referenced directly on the GPU
 No need for clCreateBuffer() => cl_mem object to encapsulate a buffer
 Use clSVMAlloc() to allocate memory. To create Fine-grained buffer, use flag 

CL_MEM_SVM_FINE_GRAIN_BUFFER

CPU hostGPU



Shared Virtual Memory – Kernel setup

Two ways to pass SVM pointer to a kernel
 Use clSetKernelArgSVMPointer() to pass the pointer directly
 If this buffer contains pointers to additional SVM regions, use 

clSetKernelExecInfo () with CL_KERNEL_EXEC_INFO_SVM_PTRS flag

CPU host



Nested Parallelism
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• “Device-side enqueue”

 OpenCL kernels can launch ‘child’ kernels on the device without returning control to 
the CPU host

• Enables flexible work scheduling entirely on the GPU

 Recursive algorithms (e.g. quickSort, Sierpinski’s Carpet,  etc.)

• Also, meets competitive challenge with CUDA’s implementation

• Device-side enqueue Building blocks:

 Host side API: creating a default device queue from the host

 Block Syntax: simplifies device side enqueue

 Device side API: enqueue_kernel



Sierpiński Carpet

The Sierpiński carpet is a plane fractal first described by Wacław Sierpiński in 1916.

Start with a white square. 

Divide the square into 9 sub-squares in a 3-by-3 grid

Paint the central sub-square black. 

Apply the same procedure recursively to the remaining 8 sub-squares

And so on …

See http://en.wikipedia.org/wiki/Sierpinski_carpet for more info

* Sierpiński Carpet image sequence above from http://en.wikipedia.org/wiki/Sierpinski_carpet

http://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski
http://en.wikipedia.org/wiki/Sierpinski_carpet
http://en.wikipedia.org/wiki/Sierpinski_carpet


Sierpiński Carpet Kernel in OpenCL 2.0

Easy to translate recursive algorithm 
to implementation



Sierpiński Carpet - Result

2187x2187 image: 𝟖𝟔 = 299592 enqueue_kernel calls!
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Achieving Performance with OpenCL 2.0 on Intel Processor 

Graphics

Presented By: Robert Ioffe, Sonal Sharma and Michael Stoner

Date and Time: May 13th 2015, 10:40am

Conference Session on OpenCL 2.0
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Additional Resources
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