The Great Beyond: Higher Productivity, Parallel
Processors and the Extraordinary Search for a Theory of
Expression

Alan S. Ward

Distinguished Member Technical Staff,
Manager, Multicore Development Tools

Texas Instruments

Title Inspiration:
“The Great Beyond: Higher Dimensions, Parallel Universes and the Extraordinary Search for a Theory of Everything”,
Paul Halpern

%ip TEXAS INSTRUMENTS

SoC Trends

Power, Performance, and Area (Cost) is optimized through specialization and replication.

DSP |:> %E>

Single Core Multicore

The business case is clear !

The cost:

Increased software complexity
Specialized developer skills
Reduced application portability

The goal:

Keep the benefits of hardware specialization and replication,
And eliminate reduce the delta cost!

Heterogeneous Multicore

CPU

DSP I_ DSE

uC

GPU I_ H. IP

Various Multicore

DSP Digital Signal Processor
DSE Domain Specific Engine
H. IP Hardware IP block

uC Microcontroller

%ip TEXAS INSTRUMENTS

Maintaining Software Investment / Facilitating OpenCL Adoption

Single Core to Multicore
— OpenMP introduced
— New software application can run single or multicore

Multicore to Heterogeneous Multicore
— OpenCL introduced, but
¢ What about existing code?
« What about OpenMP in existing code?
« What about malloc/free in existing code?
¢ What about ???

An answer of “rewrite using “pure” OpenCL” was rejected
— Additional cost for status quo !

OpenMP 4.0
target clause

OpenMP

OpenCL

DSP

Single Core

!
=

=

Multicore

— Additional code base as the OpenCL version would not backward run on the multicore platforms.

Simple solution (examples)

— Allow OpenCL C code to call standard C code (including OpenMP enabled C code)
— Provide a means for dynamic heap allocation (all memory spaces) that does not conflict with OpenCL runtime allocations.

Heterogeneous Multicore

%ip TEXAS INSTRUMENTS

OpenCL C calling Standard C

const char *kern_src =" kernel void oclwrapper(global char * buf, int size) { alg(&buf[get_group_id(0)*size], size); } ";

Program::Sources source(1, make_pair(kern_src, strlen(kern_src))); Standard C function

Program program = Program(context, source);
Resolved by this object code,

program.build(devices, "ccode.obj"); Passed as a build option

* The standard C Code is pre-compiled outside the OpenCL context and the resultant object filename is simply
passed as an option to the OpenCL C build method.

— Could use 1.2 separate compile and link model
— However, current implementation is 1.1 conformant and we wished to us the 1.1 C++ bindings unmodified.

» If the alg function is OpenMP enabled
— The OpenMP runtime is embedded in our OpenCL runtime, so nothing further is needed on the build side.
— On the run side, user must ensure parallelism from OpenCL kernels and parallelism from OpenMP do not conflict
» Ensured if the kernel is submitted to an “in order” queue as a task (i.e. 1 work-item)

%ip TEXAS INSTRUMENTS

TI's Logical View of OpenCL execution

Logical view of OpenCL execution model DSP

core 1

DspP
core 2

CcPU

DSP
core N

0
o
]
=
~
m

Lolor hey

Barrier — Not executed, but cannot be popped from queue until all DSP cores are free. Adjacent barriers behave like one.

Workgroup — Popped from gqueue and executed on one free dsp core.

Coherency — Explicit cache coherency operations if needed. These are popped off queue and executed by all DSP cores.

AEAN

Task — Popped from gueue and executed on one free dsp core. These contain embedded coherency operations.

Queue Patterns for different kernel engueue methods

m —— m enqueueMN DRangeKernel{Queue, ...}
E enqueueTask(inOrderQueue, ...)

5 enqueueTask{OutOfOrderQueue, ...}

i3 TEXAS INSTRUMENTS

OpenCL C calling Std C calling malloc/free

const char *kern_src = " kernel void oclwrapper(global char * buf, int size)

{

__heap_init_ddr(buf, size); Initialize a heap that can be used in subsequent code

std_c_app();
P

* Unadorned malloc/free are available
— But, to a size limited heap.
— Did not want to partition available memory between OpenCL managed and malloc managed.
— Did not want to have devices send malloc/free requests to the host

* Created adorned malloc/free
— Using additional built-in functions

e _ heap_init ddr, _ malloc_ddr, _ free_ddr
 _ heap_init_msmc, __malloc_msmc, __ free_msmc
e _ heap_init_|2, __malloc_I2

— DDR and MSMC heaps persist for the lifetime of the buffer containing the heap
— L2 heaps persist for the lifetime of a kernel invocation

%ip TEXAS INSTRUMENTS

A Different View of OpenCL.:

OpenCL Reduces Software Complexity ?

It depends on your frame of reference !

If this is your frame of reference

If this is your frame of reference CPU

No

Yes

i3 TEXAS INSTRUMENTS

Custom Device feature extends OpenCL control

Three Categories of non OpenCL C capability

— uC, microcontrollers
* No support floating point, (emulated at cost)

— DSE, Domain Specific Engine
* Specialized ISA, not generally programmable
e Can be programmed with a DSL

— H. IP, Hardware IP blocks
¢ Fixed function
« May have controls, configurations
e Consumes and/or Produces

Still useful to leverage OpenCL buffers, events on
these alternative devices.

Custom Device allows them to be programmed with
either:

— An OpenCL C subset

- ADSL

— Selection from a set of fixed functions.

Custom Device

OpenCL

, ' |
I_ CPU

DSP

DSE

o

GPU

Heterogeneous Multicore

Various Multicore

%ip TEXAS INSTRUMENTS

OpenCL execution model:
A fit for Classical Embedded?

]]]] Host domain
Typical OpenCL applications execute in a master-worker model.
— Host is responsible for execution, scheduling, and data availability. T T
Kernel Kernel

Device 1 domain

Kernel

Device 2 domain

Typical Embedded execution is a data flow model. -
— Distributed control and execution
DSP DSP

— The algorithm is partitioned into multiple blocks.
» Each block is assigned to a device compute unit.
DSP 7 DSP
DSP

DSP DSP > CPU

N\

Sensor Array

» The output of one block is input directly to the next block.
* A block is stimulated awake by data ready

— Patrtition the algorithm to optimize performance
— The flow typically repeats on a regular basis

%ip TEXAS INSTRUMENTS

OpenCL execution model:
A fit for Classical Embedded?

In a shared virtual memory domain:
— The data can flow direct
— No communication hops through host required

OpenCL 2.x added a number of features that assist a Data Flow
Model:
— Pipes
— Shared virtual memory, in general
— Fine grained virtual memory, memory ordering rules and atomics
— Device side kernel enqueue

OpenCL 1.2 added Device Partitioning

— Which allows a static partition of algorithmic blocks to reserved
portions of a device.

Control Flow ——>
Data Flow —

Host domain

\2

Kernel

Device 1 dom\a\in

fKerneI

Device 2 domain

Kernel

DSP

DSP

DSP]

DSP

10

%ip TEXAS INSTRUMENTS

But, What about ?

» Using the OpenCL 2.0 feature set
— We can implement the data flow model within a device,
— In a power efficient manner.

* But, what about data flow across devices?
— Can’t use device-side enqueue, for example
— Perhaps?
— Power efficient?

[ll

DSP

—)

CPU

| Dsp

DSE

] GPU

%ip TEXAS INSTRUMENTS

	The Great Beyond: Higher Productivity, Parallel Processors and the Extraordinary Search for a Theory of Expression
	SoC Trends
	Maintaining Software Investment / Facilitating OpenCL Adoption
	OpenCL C calling Standard C
	TI’s Logical View of OpenCL execution
	OpenCL C calling Std C calling malloc/free
	A Different View of OpenCL:�	OpenCL Reduces Software Complexity ?
	Custom Device feature extends OpenCL control
	OpenCL execution model: �A fit for Classical Embedded?
	OpenCL execution model: �A fit for Classical Embedded?
	But, What about ?

