Optimizing OpenCL™ for Altera®
FPGAS

David Neto
Principal Design Engineer, Altera Corporation

International Workshop on OpenCL, Bristol
2014-05-12

ALTERAY

MEASURABLE ADVANTAGE ™

Performance challenge

Performance Wanted

Multimedia Medical Radar High-Performance
Computing

Architectural Strategies T
’fﬁ. !:
al
e wd Memory Controller FEE] i
T g L B z < :
ey z ; z ¢ o]l Co
& ‘ : Do ey | b ' Purpuse’
2 ’ Ce 0 ore H -
‘3'; it é Core. Core. Q ore. i g
2 i s i S ERTE ‘o ‘
i i . 2 f Z)
i !
] I
v: hared L3 Cache
1
G

Single Core Multicores 100’s-Cores

MEASURABLE ADVANTAGE™

2 © 2014 Altera Corporation—Public

Spectrum of approaches to high performance

Single Cores

© 2014 Altera Corporation—Public

Multi-Cores

Multi-Cores
Coarse-Grained
CPUs and DSPs

Coarse-Grained
Massively
Parallel
Processor
Arrays

Fine-Grained
Massively
Parallel
Arrays

FPGAs are radically different
from CPUs and GPUs

What kind of OpenCL runs well on an FPGA?

/AYOTS YA\,

MEASRABLE ADVANTAGE™
4 © 2014 Altera Corporation—Public

FPGA architecture

Altera’s mapping of OpenCL to FPGAs
What’s expensive, what’s cheap
Design and coding strategies

Q&A

5 © 2014 Altera Corporation—Public

FPGA Architecture

Part 1. FPGAs for software engineers
FPGA datapath ~ Unrolled CPU hardware

ALTERAY

MEASURABLE ADVANTAGE ™

A simple 3-address CPU

4 ll I

LdAddr LdData StAddr
PC — Fetch » Load » Store
1 1 StData
Instruction | Op
Op Registers o J\ _____
[Aaddr . ALU)
Val Baddr A e C
N e sV B
Caddr B !
— TR
CWriteEnabIeN CData SmTmmmememmmssssssoooooooeos

Op

fA}l hre Dr—1 YAE

MEASLRABLE ADVANTAGE™

7 © 2014 Altera Corporation—Public

Load immediate value into register

4

ll

I

LdAddr LdData StAddr
PC=» Fetch » Load » Store
1 1 StData
Instruction | Op
Op Registers L J\ _____
Paddr . ALU)
A > . C
Val Baddr ! :m | :
| —\/] |
Caddr B !
s 5 =®_I_' —
—

8

© 2014 Altera Corporation—Public

CWriteEnabIe1 1 CData

Op

e e e e e e e e e e e e e e, e, — =

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

Load memory value into register

4

il

I

LdAddr LdData StAddr
PC— Fetch | > Load " Store
1 1 StData
Instruction Op
Op Registers N i _____
Aaddr: ALU N
Val Baddr A : >\ i : <
Caddr B N I
a |

9

© 2014 Altera Corporation—Public

CWriteEnabIe1 1 CData

e e e e e e e e e e e e e e, e, — =

Op

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

Store register value into memory

4

PC=» Fetch

ll

!

Instruction

Op

Val

10 © 2014 Altera Corporation—Public

LdAddr LdData StAddr
» Load —> Store
AStData
. Op
Registers 1 J\ _____
Aaddr . ALU)
A IR
Baddr : > TN -
| g
Caddr B !
— TR
—
CWriteEnable N CData ~TTTTTTTTTThTTTToTTTTTTTUT
Op

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

Add two registers, store result in register

4 ll I

LdAddr LdData

StAddr
PC=» Fetch » Load » Store
1 1 StData
Instruction Op

Op Registers] l _____
Aaddr ALU

— : i :

A | . ' C

Val Badd : :
— - >® .

Caddr ! :

— —R— =

CWriteEnabIe1 1CData B IR LR LR

Op

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™
11 © 2014 Altera Corporation—Public

Multiply two registers, store result in register

4 ll I

LdAddr LdData

StAddr
PC—= Fetch » Load " Store
1 1 StData
Instruction Op
Op Registers o l _____
Aaddr ; ALU :
— : > :
Val Baddr i : <
Cadd |
Bt — —>®_’_' |

CWriteEnabIe1 1 CData TTTTTTTTTTTtttttY4TYCT

Op

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

12 © 2014 Altera Corporation—Public

A simple program

m Mem[100] +=42 * Mem[101]

m CPU instructions:

RO < Load Mem[100]
R1 < Load Mem[101]
R2 < Load #42

R2 < Mul R1, R2

RO < Add R2, RO
Store RO - Mem[100]

13 © 2014 Altera Corporation—Public

CPU activity, step by step

=5
RO < Load Mem[100] ﬂ.@: T
ime

by
R1 < Load Mem[101]

s pih
R2 & Load #42 ﬂ_@

>y e

R2 €< Mul R1, R2

v
RO < Add R2, RO

1 {
e

Store RO 2> Mem[100] fA}l hre Dr'])_//Q ‘

MEASURABLE ADVANTAGE™

14 © 2014 Altera Corporation—Public

Unroll the CPU hardware...

[
RO < Load Mem[100]
Space
e
R1 < Load Mem[101]

bl p
R2 < Load #42 ﬂ_@

>y e

R2 €< Mul R1, R2

v
RO < Add R2, RO

1 {
e

Store RO 2> Mem[100] fA}l hre Dr'])_//Q ‘

MEASURABLE ADVANTAGE™

15 © 2014 Altera Corporation—Public

... and specialize by position

by
RO €< Load Mem|[100
[100] 1. Instructions are fixed.

Remove “Fetch”

by
R1 < Load Mem[101]

s pih
R2 & Load #42 ﬂ'@

>y e

R2 €< Mul R1, R2

v
RO < Add R2, RO

! !
e

Store RO 2> Mem[100] A\ [0[3 RYA\

16 © 2014 Altera Corporation—Public

... and specialize

RO €< Load Mem|[100
[100] 1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops
R1 < Load Mem[101] P

ol o]

ﬁ}:
I

R2 €< Load #42

B

%
-

»
>

R2 €< Mul R1, R2

RO €< Add R2, RO

Store RO 2> Mem[100]

HEE

17 © 2014 Altera Corporation—Public

... and specialize

RO €< Load Mem|[100
[100] 1. Instructions are fixed.

Remove “Fetch”
Remove unused ALU ops
Remove unused Load/ Store

N

R1 < Load Mem[101]

L

R2 €< Load #42

R2 €< Mul R1, R2

RO €< Add R2, RO

Store RO 2> Mem[100]

LE £ G

18 © 2014 Altera Corporation—Public

... and specialize

RO €< Load Mem|[100
[100] ’i;) 1. Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load/ Store
Wire up registers properly!

e SJe
And propagate state.
R2 < Load #42
yod
R2 < Mul R1, R2
A4

R1 < Load Mem[101] ' {

B wN

RO €< Add R2, RO

Store RO - Mem[100] ol A\ [0[3 RYA\

19 © 2014 Altera Corporation—Public

... and specialize

RO €< Load Mem|[100
[100] ’i; 1. Instructions are fixed.
Remove “Fetch”

.,C{ 2. Remove unused ALU ops
R1 < Load Mem({101] 3. Remove unused Load/ Store
A

. Wire up registers properly!

And propagate state.
R2 €< Load #42 5. Remove dead data.
v
R2 € Mul R1, R2
:>J
[Pl__n_l

RO €< Add R2, RO

Store RO 2> Mem[100]

20 © 2014 Altera Corporation—Public

... and specialize

>rs
RO < Load Mem[100] : :
1. Instructions are fixed.
Remove “Fetch”
2. Remove unused ALU ops
R1 < Load Mem({101] 3. Remove unused Load/ Store
4. Wire up registers properly!
And propagate state.
R2 < Load #42 5. Remove dead data.
6. Reschedule!
R2 € Mul R1, R2
RO € Add R2, RO
Store RO 2> Mem[100] A\ [0[3 RYA\

21 © 2014 Altera Corporation—Public

FPGA datapath = Your algorithm, in silicon

Load Load 42

Store

22 © 2014 Altera Corporation-—Public

FPGA datapath = Your algorithm, in silicon

Build exactly what you need:
Operations
Data widths
Memory size, configuration

Efficiency:
Throughput / Latency / Power

23 © 2014 Altera Corporation-—Public

Deep thought #1

OpenCL code Is portable
Not always performance portable

\

L
Would you rather contort your code,
Or contort your machine?

Altera gives you a program-specific machine

/AYOTS YA\,

MEASRABLE ADVANTAGE™
2 © 2014 Altera Corporation—Public

FPGA Architecture

Part 2: Business influences
Why FPGAs are the way they are

ALTERAY

MEASURABLE ADVANTAGE ™

Wide range of applications

Consumer Test, Communications " - Computer &
Automotive Measurement Broadcast Military & Industrial Storage
& Medical
@ W :
Entertainment Instrumentation Wireless Military Computers
Broadband Medical Cellular Secure comm. Servers
Audio/video Test equipment Basestations Radar Mainframe
Video display Manufacturing Wireless LAN Guidance and control
: . Storage
Automotive Networking Security & RAID g
Navigation Switches Energy Management SAN
Entertainment Routers Card readers
Control t .
. A-?-r,\‘,lro systems Office
Wireline -
: Automation
Optical .
Metro Co_plers
ACCesS Printers
MFP
Broadcast
Studio
Satellite

Broadcasting

26 © 2014 Altera Corporation—Public

Typical FPGA use cases (up to now)

m Technicaldemands

— CPU / GPU too slow or power hungry

— Exotic high speed 10

— Hard real-time

~ Can't afford 100M$ and 2 year design cycle for an ASIC

m Deployment scenario
— Usually single long-lived application

m Conseqguences
— At the edge of silicon capability
— Extreme flexibility and control
— Custom embedded system
— Higher initial design investment (than software)

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

27 © 2014 Altera Corporation—Public

Altera FPGA: fine grain massively parallel array

m Massive Parallelism
— Millions of bit level logic elements

A

— Thousands of 20Kb memory blocks
— Thousands of DSP blocks

— Dozens of High-speed transceivers
® E.g. 28Gb/s each

— Millions of programmable wires

m Traditionally hardware-centric |
design flow

Programmable
Routing Switch

| BEEN BEN 0 EEW 0 BN BN BN O EEm0 O BEw0 w0 Ew |
H .

Logic
Element

@t;xl/
fAJ I | — 06§A5 '

MEASURABLE ADVANTAGE™

28 © 2014 Altera Corporation—Public

Altera FPGA: ARM® processors on the die

m OpenCL Host and Device
on the same die

N JUSt add RAM and power supply,

and clock generator, and ...

Peripherals | ARM'|| ARM!

Memory controller

Programmable
Routing Switch

Logic
Element

29 © 2014 Altera Corporation-—Public

Mapping OpenCL to Altera FPGAs

Altera’s SDK for OpenCL.:
Software design flow for Altera FPGAs
Exploit FPGA strengths

ALTERAY

MEASURABLE ADVANTAGE ™

Altera SDK for OpenCL

m Two major releases a year
m May 2013: v13.0: OpenCL conformance
m Nov 2013: v13.1: Board partner program

m Coming soon: v14.0

31 © 2014 Altera Corporation—Public

Compiling OpenCL to FPGASs

Host Program
Production flow: main()
Offline compilation only ~_ | ("5 ogram prog
= clCreateProgramWithBinary (..);
Kernel Program . . read_data_from file(..);
R rep— maninpulate_data(..);
pen
sum(global const float *a,)
global const float *b, L Host Program + Kernels g clEnqueueWriteBuffer(..);
global float *answer) ‘ clEnqueueNDRangeKernel(..,sum, ..);
{ (.) clEnqueueReadBuffer(..);
int xid = get_global id(@); Altera SDK } [Standard }
answer[xid] = a[xid] + b[xid]; . Compiler C Compiler display result to user(..);
} . i ‘ J } |
.a0cx X86 binar 1
. /yg

32 © 2014 Altera Corporation—Public

FPGA OpenCL Architecture

FPGA External External
Memory Memory >
B Controller Controller > 8
External <—>[PCle] & PHY & PHY 2y,
Processor $
Global Memory Interconnect
M4 Mt 4
f > M20K
_l* | | —l* l | J" | | > M20K
\ 4 I) 4 | \ 4 | >
4 l I M20K
> M20K
i Kernel i Kernel Kernel N
[] Prebuilt | || Pipeline ||| Pipeline Pipeline M20K
D d -" 1 * M20K
Customize
v v
Custor ARl AR
kernels Local Memory Interconnect

Modest external memory bandwidth
Extremely high internal memory bandwidth
Highly customizable compufte cores /NETERVA

MEASURABLE ADVANTAGE™

33 © 2014 Altera Corporation—Public

Relevant questions differ by architecture

GPU FPGA

How many private registers? How much area does this kernel occupy?
How much local memory? What's the initiation interval?

How many compute units? Howdo | geta license?

How many processing elements? | need Quartus®II?

What is the memory banking scheme? What's Quartus II?

Altera OpenCL
N\ device binary

Altera SDK for OpenCL Compiler
Lieﬂ '-> Jerog rron QM
Quartus project [programming file

Quartus I W
FPGA CAD

Compiler

34 © 2014 Altera Corporation—Public

Exploiting FPGA strengths

Pipelined parallelism

Agnostic to divergent control flow
Optimized mix of operations, functions
Customized local, global, constant memory

m (All traditional compiler optimizations too0)

35 © 2014 Altera Corporation—Public

The BIG Idea behind OpenCL

m OpenCL execution model ...
— Define N-dimensional computation domain
— Execute a kernel at each point in computation domain

Traditional loops Data Parallel OpenCL

kernel void
dp _mul (global const float *a,

global const float *b,
global float *c)

void

trad mul (int n,
const float *a,
const float *b,
float *c) {

{ int id = get_global id(0);

int i;
for (i=0; i<n; i++) c[id] = a[id] * b[id];
c[i] = a[i] * b[i];
} } // execute over “n” work-items

fA}l hre ﬁ %Q

MEASURABLE ADVANTAGE™
© 2014 Altera Corporation-—Public

Data parallel kernel

float *a =

float *b

float *answer

37 © 2014 Altera Corporation—Public

__kernel void

sum(__global const float *a,
__global const float *b,
__global float *answer)

{
int xid = get global id(9);
answer[xid] = a[xid] + b[xid];

¥

\,
N
N
N
N
N
N
N

fA}l hre ﬁ %Aé

MEASURABLE ADVANTAGE™

Example Pipeline for Vector Add

38

7

g e

Load

=,

8 work items for vector add example

Load

+

Store

© 2014 Altera Corporation—Public

oll1/l21]|3|l4l|l5]| 6] 7
Work item IDs

m On each cycle the portions of the
pipeline are processing different

threads

m While thread 2 is being loaded,

thread 1 is being added, and
thread O is being stored

Example Pipeline for Vector Add

8 work items for vector add example

1 2 3 4 5 6 V4
s ir

Load Load T

ﬁ Work item IDs
—+

m On each cycle the portions of the
pipeline are processing different
threads

Store m While thread 2 is being loaded,

thread 1 is being added, and
thread O is being stored

39 © 2014 Altera Corporation—Public

Example Pipeline for Vector Add

40

8 work items for vector add example

2 3 4 5 6 V4
e

Load Load T
@4 0 | Work item IDs
i m On each cycle the portions of the
pipeline are processing different
threads
Store m While thread 2 is being loaded,

thread 1 is being added, and
thread O is being stored

© 2014 Altera Corporation—Public

Example Pipeline for Vector Add

41

8 work items for vector add example

Load

e Ja

- _J{a2p _J

Load

5

Store

© 2014 Altera Corporation—Public

31141 5||6]| 7

T

Work item IDs

m On each cycle the portions of the
pipeline are processing different
threads

m While thread 2 is being loaded,

thread 1 is being added, and
thread O is being stored

Example Pipeline for Vector Add

42

8 work items for vector add example

4 || 5] 6|7

T

Work item IDs

m On each cycle the portions of the
pipeline are processing different
threads

m While thread 2 is being loaded,

thread 1 is being added, and
thread O is being stored

All silicon used efficiently at steady-state

© 2014 Altera Corporation—Public

fA}l hre Dr—1 YAE

MEASLRABLE ADVANTAGE™

So what’s expensive, and what’s
cheap?

ALTERAY

MEASURABLE ADVANTAGE ™

Cheap operations

m Bit manipulation
— Nearly free

m Simple integer arithmetic
— add, sub, mul
— The narrower the better, e.g. shortvs. int vs. long

m Use of private memory
— It's abundant, especially if structured as shift-registers.

m Example applications:
— Encryption, hashing, fixed point signal processing

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

44 © 2014 Altera Corporation-—Public

Optimal function mix: E.g. Inverse Normal CDF

float ltgnorm(float p) :
{ « Complex functions sqrt, log
floatq, r; * Require (scarce) special

if(p<O0||p>1){return 0.0;} : . .
elseif (p == 0) { return -HUGE_ VAL /* minus "infinity" */; function unit on typical GPU
 FPGA custom datapath:

elseif (p ==1) {return HUGE_VAL /* "infinity" */;
exactly the right balance of

elseif (p < LOW) {
function units

[* Rational approximation for lo

q=sqrt(-2*log(p));
return (((((c[0]*q+c[1])*q+c[2])*a+c[3])*q€[4])*q+c[5]) /

((((d[0]*a+d[1])*q+d[2])*q+d[3]*q+1); hRch
}elseif (p > HIGH) { | Geometry controller |
[* Rational approximation for upger region */ | SMC |
q =sqrt(-2*log(1-p)); sm || sm |[sm
return -(((((c[0]*q+c[1])*ag+c[2])*g+c[3])*q+c[4])*g+c[5]) / s | s |
d[0]*g+d[1])*g+d[2])*q+d[3])*q+1); el o |
T ((((d[O]*q+d[1])*q+d[2])*q+d[3])*q+1)
/* Rational approximation for central region */ | 5 | i |5 .
g=p-0.5:
r=q*dq; [sellse] Ll [spllse] L] [spllse]
return (((((al0T*r+a[1)*r+a[2])*r+a[3]yr+a[4])*r+a[5])*q/
(((((b[OT*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1); I g I g = |
} Texture units
} | Texture L1 l %AS ’

MEASICABLE ADVANTAGE ™
45 © 2014 Altera Corporation——Public

Optimized Local Memory: Customized to your program

m Abundant: Not just 32KB

— Stitch together small blocks as needed
m Alias analysis enables parallel access
m Custom access widths, banking

M20K | M20K | M20K | M20K| M20K/| M20K |M20K | M20K

BankO | Bankl| Bank2|| Bank3 | Bank4 | Bank5 | Bank6 | Bank7

Load/Store| | Load/Store| | Load/Store| | Load/Store

Typically single cycle access
as wide as your code wants

46 © 2014 Altera Corporation-—Public

Optimized Global Memory: Coalescing

m External memory has wide words (256 bits)

m Loads/stores typically access narrower words (32-128)
bits)

32132 1 3232|3232 | 32| 32
| 256-bit DDR word |

m Combine requests to maximize DDR efficiency
— Reduce thrashing in DDR “protocol’

47 © 2014 Altera Corporation—Public

Coalescing example

m Dynamic: Hardware exploits runtime pattern

Load/Store Addresses (128-bit words):
1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 100a | 100c | 100d

| [I\ J
1 burst request for 4 DDR words 1word 1 word

- 3 requests in total

m Static: Compiler analysis infers pattern
— Chooses best interface for each load/store sitein your code

m Optimal when indexing by work-item ids
— And simple linear combinations

Cachesonly hurt
you in this case:

c[id] = a[id] * b[id]; Burn power ALTERA

uselessly [—— """

int id = get global id(0);

48 © 2014 Altera Corporation—Public

Divergent control flow: Bad for GPU

m GPU uses SIMD
pipeline to save area
on control logic.

m Branches have a
significant impact on
GPU parallelism

m Parallel threads
running through
different branches
cannot run
concurrently

SRRRRRY
SRRRRRY

Path B

Branch
Path A

b
Pl

SRRRRRY

MEASLRABLE ADVANTAGE™

Divergent control flow: Just fine for FPGA

PGA datapath
already has all
operations in silicon

Branch

Path A

Path B

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

50 © 2014 Altera Corporation—Public

Divergent control flow: Just fine for FPGA

m FPGA datapath
already has all
operations in silicon

m Exploit pipelining

Path B

51 © 2014 Altera Corporation—Public

Divergent control flow: Just fine for FPGA

m FPGA datapath
already has all
operations in silicon

m Exploit pipelining
m Speculatively execute

52 © 2014 Altera Corporation-—Public

Divergent control flow: Just fine for FPGA

FPGA datapath
already has all
operations in silicon

= Exploit pipelining SCLS
= Speculatively execute pat'r{\P‘athA

m Compress the
schedule \\/

53 © 2014 Altera Corporation—Public

Divergent control flow: Just fine for FPGA

FPGA datapath
already has all

operations in silicon /\

O Exploit pipeining Branch| | Path B| | Path A
m Speculatively execute

m Compress the
schedule

m Overlap branch
computation too

K

54 © 2014 Altera Corporation—Public

Divergent control flow: Just fine for FPGA

FPGA datapath
already has all
operations in silicon Branch. Path B. Path A

m Exploit pipelining
m Speculatively execute

m Compress the
schedule

m Overlap branch
computation too

m Absorb into one block

55 © 2014 Altera Corporation—Public

Rules of thumb for great OpenCL code on FPGA

Bit manipulation

Integer arithmetic

Large local storage requirements
Complex control flow

Unusual function mix

Predictably unaliased memory access
Predictable access patterns

Architecture and compiler give these for free

MEASURABLE ADVANTAGE™

56 © 2014 Altera Corporation—Public

Low level compiler knobs

ALTERAY

MEASURABLE ADVANTAGE ™

Use restrict on kernel pointer arguments

m Your promise that storage under this pointer doesn’t
alias with other restrict pointer arguments

m Standard C99

m Compiler can avoid conservatism in scheduling,
conflicts

kernel void test (global constfloat * restrict a,
global const float * restrictb,
global float * restrict answer)

{
size_tgid = get_global id(0);
answer[gid] = a[gid] + b[gid];

}

fA}l hre ﬁ %Aé

MEASURABLE ADVANTAGE™

58 © 2014 Altera Corporation—Public

Use reqd work group size

m Enqueued work group size must match
m Standard OpenCL

__attribute__ ((reqd_work_group_size(128,1,1)))
kernel void compute(...)

{
=

Any clues about the shape of the computation

will help the compiler
fA‘”| :,E DE)_/AL

MEASLRABLE ADVANTAGE™

59 © 2014 Altera Corporation-—Public

#pragma unroll

m Compiler often automatically unrolls loops with fixed bounds

m Sometimesyou should give a hint

— To control amount of hardware generated
— You might know better than the compiler

m Mandelbrotdesign example:

/[Perform up to the maximum number of iterations to solve

// the current work-item's position in the image

I/l The loop unrolling factor can be adjusted based on the amount of FPGA
/I resources available.

#pragma unroll 20

while (xSqgr + ySqgr < 4.0f && iterations < maxlterations)

{..

m OpenCL 2.0 has __ attribute _instead

fA}l hre Dr—1 YAE

MEASLRABLE ADVANTAGE™

60 © 2014 Altera Corporation—Public

Custom sized local memory

m Remember, local memory is abundant

kernel void myLocalMemoryPointer(
local float * A,
~attribute ((local mem size(1024))) local float * B,
~attribute ((local mem size(32768))) local float * C,
global float* D)
{

5

m Defaults to 16KB per pointer-to-local argument

m In this example:
— A: 16KB, B: 1KB, C: 32KB

m Controls area
m Enables wider range of algorithms

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

61 © 2014 Altera Corporation—Public

Max work group size

m Upper bound on allowable enqueued workgroup size
— Defaultis 256

__attribute_ ((max_work_group_size(128)))
kernel void test (...)

{

barrier(CLK_LOCAL_MEM_FENCE);

}

m Controls area used by the kernel
— Only significant when using a barrier

62 © 2014 Altera Corporation—Public

Force SIMD-like vectorization

__attribute_ ((num_simd_work_items(4)))
__attribute_ ((reqd_work_group_size(64,1,1)))
kernel void test (global const float * restricta,
global const float * restrictb,
global float * restrict answer)
{
size_tgid = get_global_id(0);
answer|[qgid] = a[gid] + b[gid];
}

m Must use with reqd _work _group_size
— Must divide evenly

m Reduces area: Less control logic (like for CPU/GPU)
m Increases throughput: More work done per clock cycle

m This example
— Yathe cycles, each cycle computes float4

63 © 2014 Altera Corporation—Public

fA}l hre ﬁ %Aé

MEASLRABLE ADVANTAGE™

Force replication of the kernel internal datapath

__attribute_ ((num_compute_units (2)))
__attribute_ ((reqd_work_group_size(64,1,1)))
kernel void test (global const float * restricta,
global const float * restrictb,
global float * restrict answer)
{
size_tgid = get_global_id(0);
answer|[qgid] = a[gid] + b[gid];
}

m Increases number of concurrent workgroups
m Increases area
m Usenum_simd_work_items instead if you can

fA}l hre Dr—1 YAE

MEASURABLE ADVANTAGE™

64 © 2014 Altera Corporation—Public

Force replication of the kernel internal datapath

__attribute_ ((num_compute_units (2)))
__attribute_ ((reqd_work_group_size(64,1,1)))
kernel void test (global const float * restricta,

{

size_tgid = get_global_id(0);
answer[gid] = a[gid] + b[gid];

}

global const float * restrictb,
global float * restrictanswer)

_

/ Kernel test
2

Load

Store

~

) T

e

/ Kernel test, num_compute_units(2) \

65 © 2014 Altera Corporation—Public

_

Load

2

3

Load

Load

66

g

Load

)
Y/

Control __ constant cache size

Caches only built if __constant buffer kernel arguments

m Usethe --const-cache-bytes <N> compiler argument to
control its size

m Controls area
m Tune according to algorithm data access pattern

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

66 © 2014 Altera Corporation—Public

Guided buffer placement for bandwidth control

m Normally data is interleaved (striped) across both DDRX

Interfaces
— Assuming your board has multiple memory interfaces

m Often get 2x bandwidth of a single DDRXx interface

Ao A Ay ... AL A A ...
DDR #1 DDR #2

m But some algorithms work better with:
— Nointerleaving
— Manually placed buffers

fA}l hre Dr—1 YAE

MEASURABLE ADVANTAGE™

67 © 2014 Altera Corporation—Public

Guided buffer placement for bandwidth control

m Compiler: aoc -no-interleaving

m Host: Use special mem flags on buffer creation:
~ CL_MEM_BANK_1 ALTERA
- CL_MEM_BANK_2 ALTERA...

m Design example: Matrix Multiply: C € AxB
— Uses matrix blocking (like usual)

— And guided placement
® A on DDR interface 1
® B on DDR interface 2
® C on DDR interface 1

fA}l hre Dr—1 YAE

MEASLRABLE ADVANTAGE™

68 © 2014 Altera Corporation—Public

E.g. Matrix Multiply: C €A XxB

m Normal (with interleaving)
m Reading A and B, writing C: contend on both interfaces
m “Thrashes” DDR - Poor efficiency

A,, By, Co A, By, C,
DDR #1 DDR #2
: :
FPGA External External
Memory Memory
Controller Controller
& PHY & PHY

Global Memory Interconnect

I

Kernel

Pipeline m

MEASURABLE ADVANTAGE™

69 © 2014 Altera Corporation—Public

E.g. Matrix Multiply: C €A XxB

m No interleaving; Use guided buffer placement

m Balanced non-thrashing access = High DDR efficiency
— (Wefinish reading block of A before we start writing to block of C)

A C B

DDR #1 DDR #2
A A
v

v
FPGA
External External
Memory Memory
Controller Controller
& PHY & PHY

¢

Global Memory Interconnect Global Memory Interconnect

~.

Kernel

Pipeline

MEASLRABLE ADVANTAGE™

70 © 2014 Altera Corporation—Public

Design strategies:
Streaming applications

ALTERAY

MEASURABLE ADVANTAGE ™

Some applications don’t map well

m Two assumptions made in previous OpenCL examples
1. Hostinitiates all data transfers
2. Data level parallelism exists in the kernel program

m Some applications don’t match these assumptions

— Hostinitiated data transfers too expensive for some applications
— Some applications do not map well to data-parallel paradigms

m Can we avoid these problems, while still reaping the
benefits of OpenCL on Altera’s FPGAs?

What about OpenCL 2 0 device-side engqueue

. Complex code_
. Data passed Vi
. Data visible only. -

Chunky execution o v

?

4 global memory
\ygafter kernel termination.

72 © 2014 Altera Corporation-—P:

Issue 1) Host Centric OpenCL Architecture

\ /.

User
Kernel

D B

Global Memory

=7}
il

Host Co-ordinates Kernel
Invocations and Data Transfers /ANBE¥E

73 © 2014 Altera Corporation—Public

Issue 1) Host Centric OpenCL Architecture - drawbacks

m Intermediate data communicated between kernels must

be transferred through global memory
— High performance requires high bandwidth and high power !
— Limited buffer sizes when problem sizes scale to 100s of billions of points

m Having multiple kernels operating in parallel and
communicating requires the host to synchronize and

coordinate activities
— Slow, power hungry

fA}l hre ﬁ %Aé

MEASURABLE ADVANTAGE™

74 © 2014 Altera Corporation—Public

Solution: Altera Channels Vendor Extension

m Low-Latency, High Bandwidth Channels
— Enables 10 - Kerneland Kernel - Kernel Communication
— Everythinginlined in the FPGA fabric: ~oneclockcycle transfer

Kernel 1

I/O Core Kernel 0 /O Core

Kernel 2

/AYOTS YA\,

MEASLRABLE ADVANTAGE™
75 © 2014 Altera Corporation—Public

Solution: Altera Channels Vendor Extension

m Low-Latency, High Bandwidth Channels
— Enables 10 - Kerneland Kernel - Kernel Communication
— Everythinginlined in the FPGA fabric: ~oneclockcycle transfer

Kernel 1

I/O Core Kernel 0 /O Core

Kernel 2

m Communication: simple and intuitive API

— Channels are program scope variables that define the communication links
® EXx: channel float4 FLOATING_POINT _CHANNEL,;
— read_channel_altera
® Read data from channel endpoint
® Ex: float4 xvec =read_channel_altera(FLOATING_POINT_CHANNEL);
— write_channel altera
® Write data to channel endpoint
® EXx: write_channel altera(FLOATING POINT _CHANNEL, zvec);

/AYOTS YA\,

MEASRABLE ADVANTAGE™
76 © 2014 Altera Corporation-—Public

Solution: Altera Channels Vendor Extension

m Low-Latency, High Bandwidth Channels
— Enables 10 - Kerneland Kernel - Kernel Communication
— Everythinginlined in the FPGA fabric: ~oneclockcycle transfer

Kernel 1

I/O Core Kernel 0 /O Core

Kernel 2

m (/O communication requires special board support)

/AYOTS YA\,

MEASLRABLE ADVANTAGE™
77 © 2014 Altera Corporation—Public

Solution: Altera Channels Vendor Extension

m Low-Latency, High Bandwidth Channels
— Enables 10 - Kerneland Kernel - Kernel Communication
— Everythinginlined in the FPGA fabric: ~oneclockcycle transfer

Kernel 1

I/O Core Kernel 0 /O Core

Kernel 2

m Launch kernels in parallel (same cl_program)

— Use one command queue per kernel
— CclFlush all of them
— Then clFinish all of them

m They’re already all in the FPGA fabric, just waiting to go

/AYOTS YA\,

MEASRABLE ADVANTAGE™
78 © 2014 Altera Corporation—Public

Issue 2) Data-Parallel Execution

m On the FPGA, we use pipeline parallelism to accelerate

kernel void 2 ()
sum(global const float *a, Load Load
global const float *b,

global float *c) 1 @7
{ +

int xid = get global id(9); 0

c[xid] = a[xid] + b[xid];

} Store

m Threads can execute in an embarrassingly parallel
manner

fA}l hre ﬁ %Aé

MEASLRABLE ADVANTAGE™

79 © 2014 Altera Corporation—Public

Issue 2) Data-Parallel Execution - drawbacks

m Hard to express programs having partial data
dependencies during execution

kernel void 2 /b
sum(global const float *a, Load Load
global const float *b,

global float *c) 1 @7
{ +

int xid = get global id(9); 0

c[xid] = c[xid-1] + b[xid];

} Store

m Would need complex (expensive, error prone)
constructs to express correctly

fAN hre ﬁ %Q

MEASLRABLE ADVANTAGE™

80 © 2014 Altera Corporation—Public

Deep thought #2

81 © 2014 Altera Corporation—Public

A designer knows he has achieved
perfection not when there is
nothing left to add, but when there
is nothing left to take away.

— ANTOINE DE SAINT EXUPERY

Solution: Tasks and Loop-pipelining

m Allow users to express programs in a single-threaded

manner (OpenCL Task)

{
}

c[i] = c[i-1] + bfi];

for (int iI=1; 1 < n; i++)

m Pipeline parallelism still used to efficiently execute

loops in Altera’s OpenCL
— Loop Pipelining

82 © 2014 Altera Corporation—Public

=2

Load

=

i=1

\

i=0

Store

Deep thought #3

OpenCL does not require
NDRange or SIMD execution

/AYOTS YA\,

MEASLRABLE ADVANTAGE™
83 © 2014 Altera Corporation—Public

Loop Carried Dependencies

m Loop-carried dependency: one iteration of the loop
depends upon the results of another iteration of the
loop

kernel void state machine(ulong n)
{
t _state vector state = initial state();
i=0; i<n; i++
unit y = process
write channel altera(OUTPUT, y);

}

¥

m The value of state In iteration 1 depends on the value
from iteration O

m Similarly, iteration 2 depends on the value from iteration

1, etc /NOTERYA\

MEASLRABLE ADVANTAGE™

84 © 2014 Altera Corporation—Public

Loop Carried Dependencies

m To achieve acceleration, we can pipeline each iteration
of a loop containing loop carried dependencies

— Analyze any dependencies between iterations
— Schedule these operations
— Launch the next iteration as soon as possible

kernel void state machine(ulong n)

{

t_state_vector state = initial_state();

y =
write channel altera(OUTPUT y);

l At this point, we can
launch the next
I iteration

85 © 2014 Altera Corporation—Public

fAN hre ﬁ %Q

MEASLRABLE ADVANTAGE™

Loop Pipelining Example

m No Loop Pipelining m With Loop Pipelining

BN ©
N S

11

3 B

&) ;
LU>>~ i1 3 B Looks almost
=B < B like ND-
& &
ks ks] range thread
1) I T I execution!

NN

Finishes Faster because lterations

Are Overlapped
éA}l Ore ﬁ)_/JQ *

MEASLRABLE ADVANTAGE™

No Overlap of lterations!

86 © 2014 Altera Corporation-—Public

Pipelined Work Items vs. Loop Pipelining

m So what’s the difference?

tO 10
. " . _ Loop |
. Pipelined work items 11 _ dependencies
12 launch 1 item per B / may not be
B clock cycle in B resolved in 1
I B pipelined fashion I B i2- clockcycle

Pipelined Threads Loop Pipelining

m Loop Pipelining enables Pipeline Parallelism AND the
communication of state information between iterations.

fA}l hre ﬁ)_/,A§

MEASLRABLE ADVANTAGE™

87 © 2014 Altera Corporation-—Public

Altera’s compiler does a lot for you

m Generating a loop-specific machine

m Tells you how many clock cycles between iterations
— “Initiation Interval’
m Static optimization report tells you which data

dependencies are slowing down the loop
— Use —g to get better line number and variable info

fA}l hre Dr_1)_/JAé

MEASURABLE ADVANTAGE™

88 © 2014 Altera Corporation—Public

User response to improve loop pipelining

m Remove dependencies
— E.g. use simpler access patternto remove memory dependencies

m Relax dependence

— Increase dependence distance: Number of iterations between generation
and use of a value

® Often by using a shift register

m Simplify dependence complexity
— Avoid expensive operations when computing loop-carried values

Often requires application knowledge to
restructure code

89 © 2014 Altera Corporation—Public

Example: Load to Store dependency

kernel void prefixsum(global int* restrictA, unsigned N) {
for(unsignedi=1;i<N;i++){

—

| *** Optimization Report *** |
- T T T T T 1 Relative cost of global -
| Kernel: prefixsum | In.Col |
- __________]memoryto local T
| Loop for.body computation | 2.25 |
| Pipelined execution inferred. | |
| Successive iterations launched every\321 cycleg due to: | |
| | |
| Memory dependency on Load Operation from: | 3.21 |
| Store Operation T fi . | 4.7 |
| Largest Critical Path Contribuf] rue Tix requwes | |
| 49%: Load Operation restructuring the code | 3.21 |
| 49%: Store Operation | 4.7 |

MEASLRABLE ADVANTAGE™
90 © 2014 Altera Corporation——Public

Example: Accumulating a value

kernel void test(global float* restrictinput,
global float* restrict output, unsigned N)
{
float mul = 1.0f;

for (unsignedi=0;i< N;i++){
@gnput[i];

*output = mul;

©OCoO~NOOOULPA, WDN -

D

|
|
| Loop for.body |
| Pipelined execution inferred. |
| Successive iterations launched every@cycles due to: |
|
|
|
|

Largest Critical Path Contributor:
<100%: Fmul Operation

|
Data dependency on variable@

91 © 2014 Altera Corporation——Public

Example: Accumulating a value, quickly

#define DEP 6
kernel void test(global float* restrictinput, Relax dependen ce

global float* restrict output, unsigned N) across more
{ : .
float mul = 1.0f; Iterations.

floatmul_copies[DEP]; // Shift registerin private memory

o | o | Compiler infers a
for (unsignedi =0;i < DEP; i++)// Initialize copies) .
mul_copies[i] = 1.0f; shift reglster,

for (unsignedi = 0; i < N: i++) { becomes a FIFO In
/[Use one copy. Needsdatafrom DEP iterations ago
float cur = mul_copies[DEP-1] * input[i]; hardware o
Extremely efficient
I/ Shift!
for (unsignedj=DEP-1;j>0;j--){
mul_copies[j] = mul_copies[j-1];
mul_copies[0] = cur;
}
}

/| Accumulateresultwith leftovers
for (unsignedi = 0;i < DEP; i++)
mul *= mul_copies][i];

*output = mul;

92 ©2014 An«}Cupom-on—Puwc

Example: Accumulating a value, quickly

#define DEP 6
kernel void test(global float* restrictinput, Relax dependen ce

global float* restrict output, unsigned N) across more
{ : .
float mul = 1.0f; Iterations.

floatmul_copies[DEP]; // Shift registerin private memory

o | o | Compiler infers a
for (unsignedi =0;i < DEP; i++)// Initialize copies))
mul_copies[i] = 1.0f; shift reglster,

for (unsignedi=0;i < N;i++){ beCOmeS a FIFO |n

/[Use one copy. Needsdatafrom DEP iterations ago hardware

float cur = mul_copies[DEP-1] * input[i]; o

- Extremely efficient
ITt!

favrl sinecicnnmand s — DNCD 1. N . N[

Kernel: test | ILn.Col

Loop for.body4
Pipelined execution inferred.

Il
[l
Il
|
Il
I
Il
I
Il
I
Il
I
Il
|
I
Il
I
Il
I
Il
I
Il
I
Il
[l
Il
I
Il
I
Il
|
I
Il
I
Il
I
Il
I
H
4“1
[
|
I
Il
I
Il
I
Il
I
Il
I
Il
I
Il
I
Il
I
Il
|
I
Il
I
= |
I
=
o
N
S
I
Il
I
I = = I Sl

*output = mul;

93 ©2014 An«}Cap«mm—Puwc

MEASLRABLE ADVANTAGE™

Monte Carlo Asian Option Simulation

624 Billions of 819_2
lterations RNG’s Billions of Simulations lterations
Initial State Mersenne Stock Price Motion | |
e Twister and Partlgl Final Reduction
RNG Accumulation
Task / Task NDRange Kernel Task

m Channels used for direct kernel-to-kernel
communication without requiring intermediate global
memory buffers

m Uses both Tasks (single work-item) and ND-range
kernels.

m Results:
— Altera Stratix® V D8: 12.0 Billion Simulations/ Second @ 45 Waltts

94 © 2014 Altera Corporation—Public

Stock Price Motion and Partial Accumulation Kernel

kernel void black_scholes(int m, int n, float drift, float vol, float S_©, float K) { . g . .
// running statistics -- use double precision for the accumulator Slmp“ﬂed. ShOWIng 16 parallel

double sun = 0.0; sims/cycle instead of 64
for (int path=0;path<m;path++) {
float S = S_0;
float arithmetic_average = 0.0f; // We're not including the initial price in the average
for (int t_i=0; t_i<n/16; t_i++) {

barrier(CLK_GLOBAL_MEM_FENCE); EaCh Work |tem readS a
float Z[16];
float1l6é U = read_channel_altera(RANDOM_STREAM); Sequence Of random

numbers from a channel

#pragma unroll 8

for (int i=@; i<8; i++) {
// Convert uniform distribution to normal
float2 z = box_muller(U[2*i], U[2*i+1]);
Z[2*i] = z.x; Z[2*i+l] = z.y;

i
#pragma unroll 16 1 1
for (int 105 ic16; iee) { Key computation Ioop IS a
// Simulate the path movement using geometric brownian motion fu”y unro”ed ﬂoa‘tlng pOInt
S *= drift * exp(vol * Z[i]);
arithmetic_average += S; datapath
}
}
arithmetic_average /= (float)(n);
// Check if the average value exceeds the strike price erte result tO I'EdUCtIOn
float call_value = arithmetic_average - K;
if (call_value > 0.0-F) { kernel

sum += call_value;

write_channel_altera(ACCUMULATE_STREAM, sum); "

95 © 2014 Altera Corporation—Public

More elaborate task/channel examples

m On Altera’s website:
— Channelizer
— Time-Domain FIR filter
— Sobel filter
— OPRAFAST parser

— Finite Difference Computation (3D)

m Tomorrow at IWOCL.:

— “OpenCL Implementation of Gzip on Field-Programmable Gate-Arrays”
Mohamed S. Abdelfattah

96 © 2014 Altera Corporation—Public

Design strategy:
Sliding window vs. stenciling

ALTERAY

MEASURABLE ADVANTAGE ™

Sobel Filter

m Fundamental image processing algorithm
— Used commonly in industrial and automotive applications

Sobel
HW Core

m GPU codes would use architecture specific memory

access blocking, banking
— Goal: Automatically coalesce memory accesses acrosswork items

Creates many loads from memory.
Can berelatively expensive on
FPGA: area and time

/AYOTS YA\,

MEASLRABLE ADVANTAGE™

98 © 2014 Altera Corporation—Public

Sobel Filter

m Fundamental image processing algorithm
— Used commonly in industrial and automotive applications

Sobel
HW Core

m GPU codes would use architecture specific memory

access blocking, banking
— Goal: Automatically coalesce memory accesses acrosswork items

Creates many loads from memory.
Can berelatively expensive on
FPGA: area and time

/AYOTS YA\,

MEASLRABLE ADVANTAGE™

99 © 2014 Altera Corporation-—Public

Sobel Filter

m Fundamental image processing algorithm
— Used commonly in industrial and automotive applications

& e

-] " | =

Sobel e oy W
HW Core _"t,;; e g I
by jp 1 e -'.-ﬁ 'I-‘l.-.!:-'l.'l

i TR T ;
:r.l‘?r' o Rl e R "L*_’\i

R0 01 _083412

m Altera FPGA: Use Sliding Window design pattern

— Shift register structure, but now in two dimensions
— Need enough storage for a few image lines, depending on stencil size

ich LIEL LM eI HENEN W HEHEN B en Use cheap shift registers
5 OEEEE0EE0FECE008 808 in private memory.
) ‘.,-,!-,-,-,D,-,-,D,m::,:iz,-,D,D,-,-,D,l, Everythingis local to
4’& ‘DID|.I.I. IDI.I.IDIDI.IDI.IDIDI.I.IDI.J kel’ne| datapath
— e AlITERA

100 © 2014 Altera Corporation—Public

Sobel Filter

m Fundamental image processing algorithm
— Used commonly in industrial and automotive applications

Saobel
HW Core

R0 01 _083412

m Altera FPGA: Use Sliding Window design pattern

— Shift register structure, but now in two dimensions
— Need enough storage for a few image lines, depending on stencil size

Use cheap shift registers
In private memory.
Everythingis local to
kernel datapath.

101 © 2014 Altera Corporation—Public

Sobel Filter on HD Video

for (ipixel=0; ipixel<HD SIZE;ipixel++) {
#pragma unroll
for (iwidth=0;iwidth<1920*NROWS-1;iwidth++) {

line buf[iwidth] = line buf[iwidth+1];
}
line buf[iwidth] = Input[ipixel];
sobel = transform(line buf[0], line buf[l],

line buf[1920], line buf[1921]);

Device Resolution Frames per second

Stratix V 1920 x 1080p 135

102 © 2014 Altera Corporation—Public

Deep thought #4

Sometimes It 1Is more efficient to move the
data than to use pointer arithmetic to
access a different set of data

/AYOTS YA\,

MEASRABLE ADVANTAGE™
103 © 2014 Altera Corporation-—Public

Dynamic tools to help you

ALTERAY

MEASURABLE ADVANTAGE ™

Emulation on x86: New in v14.0

m Functionally debug your Altera OpenCL code on your Linux,
Windows

— Important since we’ve extended OpenCL in several ways
— Especially Channels

m Used extensively inside Altera

m aoc —c —march=emulator —g
— Then use your favourite debugger, e.g. GDB

(Kernel Shared Object \ E e e minal T EE]
Generation Host Code Executable File Edit View Terminal Tabs Help
. (gdb) run
Generatlon Starting program: /data/aling/share/emu_example/bla choles
fl|tel' Cl Wa 1g: no loa d in added nmbcﬂ 1'119 system-supplied DSO a
- 0 ging g h db enabled]
main.cpp s L 14 64/1ibthread db.so.1".
Debug read ¢ o
Library 5 1 K) o
aocdebug.a 9 J
gcc :
Dynamically \L esult rice is 6.
x86 shared I|nked rend 02 29 :
object > hrea (

fA}l e ﬁ %Q

MEASLRABLE ADVANTAGE™

105 © 2014 Altera Corporation-—Public

Profiler support in v14.0

m Runtime profiled information
— Because the compiler can’t know everything, and neither do you

m Instrument hardware pipeline with performance counters
— Read back at kernel termination

kernel void add(
global int * a,
global int * b,
global int * ¢) {
int gid = get global id(9);
c[gid] = a[gid]+b[gid];

Performance
Counters

106 © 2014 Altera Corporation—Public

Profiler GUI. Actionable feedback mapped to your code

m Bottlenecks, bandwidth, saturation, pipeline occupancy

-_— e ——— TR R R EE R T

[a
Board pcie385n_d5
Global Memory BW (MEMORY) 25600 MB/s |'F
J Source Code T Kernel Execution T matrixMul]
Line # | Source Code | Adtributes | Stall% | Occupancy® | Bandwidth |
G4 a ==aknd,; A
65 a += aStep, b += bStep) { 1
66
67 /I Load the matrices from device memory
Ga IMto shared memory; each thread loads
i) Il one element of each matrix
70 AS(ty, b = Al + UiWA * ty + 1 0: __global{MEMORY} read | 0: 2.93% 0:95.9% 0: 1398 5MB/s, 100.00%Efficiency
71 B3(ty, tx) = B[b + uiWB * ty + 1], 0: __ global{MEMORY} read | 0: 0.08% 0: 95.9% 0:10.1MB/=, 100.00%Efficiency
72
T3 Il Synchronize to make sure the matrices are loaded 0: _ global{MEMORY}, read
74 barrier(CLK_LOCAL_MEM_FENCEY; Cache Hits: 99 9%
75 Mon-aligned Accesses: 0.0%
i) #pragma unrall Memory site coalesced with other memaory sites.
rii for {int k=0; k= BLOCK_SIZE; ++k) {
78 Csub += AS(ly, k) * B3k, tx); 0. _ localread 0:0.0% 0:95.8% 0. -
79 1 (y
20
a1 Il Synchronize to make sure that the preceding
a2 Il computation is done before loading two new
83 Il sub-matrices of A and B in the next iteration f
a4 barrier(CLK_LOCAL_MEM_FENCEY);
= } v
T e - = — =

MEASURABLE ADVANTAGE™
107 © 2014 Altera Corporation—Public

Profiler GUI. Application trace

m Kernel execution in context, Buffer transfer traffic

= | B (et
'Y

Board pcie385n_d5 D
Global Memory BV (MEMORY) 26600 MB/s v
Source Code | Kemel Execution | matrixiul |
Device I1d Kernel 0.00ms 41.45ms 82.90ms 124 34ms
Device 0 matrixhul H B B B B B B B EEE EE
Device 0 Memory Transfers |
Device 1 matrixtul H B B B B B B E E B E B B
Device 1 Memaory Transfers -

Device 1 Memory Copy (from device) Il B B B BFE BB EEEEE
| | | | | | | |

Device 1 Memary Copy (to device) | | | | |

Profiler GUI. Overall bandwidth analysis

m Relative to board device capabilities

1=

Board

Global Memory BW (MEMORY)

[Source Code T Kernel Execution T matrixhul]

pcie3Bbn_db

25600 MB/s

Statistic | Measured | Optimal |
Worse Case Stall (__global) % 6.18% 0%
Kernel Clock Frequency 22T 3MHz na
Global BW (MEMORY:bank1) 2783.5 MBls 12800 MB/s
Average Write Brust 1 16
Average Read Brust 1 16
Global BW (MEMORY:bankz2) A MB/s 12800 MB/s
Average Read Brust 1 16

Just one more thing...

ALTERAY

MEASURABLE ADVANTAGE ™

Breakthrough in FPGA floating point

Arr,a?j 10 World’s first FPGA with hardened
Single Precision Floating Point

Multiplier-Adder

(This Is going to be amazing)

Wrapup

ALTERAY

MEASURABLE ADVANTAGE ™

© 2014 Akera Corporation-—Public

FPGAs are radically different
from CPUs and GPUs

OpenCL can be awesome on Altera FPGAs
But need a little bit of knowledge for best results

/AYOTS YA\,

MEASLRABLE ADVANTAGE™
113 © 2014 Altera Corporation-—Public

114 © 2014 Altera Corporation—Public

References

m Everything Altera and OpenCL

http://www.altera.com/opencl

m Design examples, covering basics and showcasing

optimized applications
— Please visit!

— http://mww.altera.com/support/examples/opencl/opencl.html

- C [wwwalteracom/support/examples/opend fopencl.html

Download Center »Documentation & myAltera Account

3 Devices n Tools & Services ¥ End Markets Technology N Support NAbout Buy

Design Examples
All Design Examples
DsP

Embedded Processors

OpenCL Design Examples
Home > Support > Design Examples >

Interface Protocols

The Altera@ SDK for OpenCLru® provides a design environment for you to easily implement

External Memory Interfaces Open Computing Language (OpenCL) applications with FPGA-based accelerators. For more
peripharals information, visit the fallowing web pages: .
Verification « Product Information s /a

+ Decumentation
Design Entry/Tool Examples . Sooor OpencL
Quartus 11 e
Qsys Design Examples
Tel The following examples demonstrate how to describe various applications in OpenCL along with their respective host
VHDL spplications, which you can compile and execute on a host with an FEGA board that supports the Altera SDK for
Verilog HDL OpenCL.
TimeQuest
On-Chip Debuaging Hello Basic This simple design example demonstrates a basic
Mentor Graphics ModelSim OpenCL kernel containing a printf call and its
Cadence NCsim corresponding host program.
Synopsys VCS Vector Addition Basic This simple design example demonstrates a basic vector

Matrix Multiplication single-precision floating-point

Mandelbrot Fractal Double-precision floating-peint,
Rendering visual

Time-Domain FIR Filter Finite impulse response (FIR)
filter, single work-item kernel,
single-precision floating-point

Sobel Filter Image filtering, single work-

115 © 2014 Altera Corporation—Public

addition OpenCL kernel and its correspending hest
program.

This design example demenstrates a high-perfermance
tiled matrix multiplication algorithm. 1t highlights the
performance benefits of using lacal memory for
intermediate buffering.

This design example includes a kernel that implements
the Mandelbret fractal convergence algerithm and
displays the results to the screen.

This design implements the time-demain FIR filker
benchmark from the HEEC Challenge Benchmark Suite.
This example shows how to efficiently describe the sliding
window data reuse pattern.

This design example demenstrates @ Sebel filker in

http://www.altera.com/opencl
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html

Thank You

ALTERAY

MEASURABLE ADVANTAGE ™

Q&A

MEASURABLE ADVANTAGE ™

ation-—Public

