
Heterogeneous Computing with OpenCL:

Strategies of Utilizing both a CPU and GPU

Hyoungseok Chu (hschu@nims.re.kr) and Hwansun Kim (iou78@nims.re.kr)

Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences, South Korea

Introduction Introduction

 ▶ Goal

 • Investigate efficient parallel strategies under

 heterogeneous computing systems.

 • Our research interests are of Linear Solvers

 especially for Krylov Subspace Methods and

 their BLAS. (axpy, dot, and spmv)

 ▶ Strategies

 • Data parallel: Load Balancing

 • Task parallel: Supplementary Acceleration

Motivation

▶ Assume we have 𝒏 numbers of data parallelizable jobs.

▶ We propose a job splitting ratio called 𝜶 which divides

 workloads into 𝜶𝒏 and 𝟏 − 𝜶 𝒏 jobs so that assign 𝜶𝒏

 jobs into the CPU and 𝟏 − 𝜶 𝒏 jobs for the GPU.

For given 𝒏, find a splitting point 𝒌∗ which is the solution

of the following min-max problem.

𝓙 𝒌∗; 𝒏 = min
𝒌∈[𝟎, 𝒏]

𝓙(𝒌; 𝒏)

where 𝓙 𝒌; 𝒏 = max(𝒄 𝒌 , 𝒈 𝒏 − 𝒌)

 𝒄(𝒌) denotes elapsed time for input 𝒌 using CPU and

 𝒈 𝒏 − 𝒌 denotes elapsed time for input 𝒏 − 𝒌 using GPU.

The splitting ratio 𝜶 with given 𝒏 is defined as follows.

 𝜶 𝒏 =
𝒌∗

𝒏
.

 𝒄 𝒏 =
𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟐)

𝑩𝑪𝑷𝑼
𝒏 +

𝒏𝟐

𝑭𝑪𝑷𝑼
+ 𝑶𝑪𝑷𝑼

𝒈(𝒏) =
𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟏)

𝑩𝑷𝑪𝑰,𝑾
𝒏 +

𝟒𝒃𝒚𝒕𝒆𝒔

𝑩𝑷𝑪𝑰,𝑹
𝒏 +

𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟐)

𝑩𝑮𝑷𝑼
𝒏

+
𝒏𝟐

𝑭𝑮𝑷𝑼
+ 𝑶𝑮𝑷𝑼

ENV: AMD OpenCL SDK 2.8, CPU: AMD FX 8120, GPU: HD7950

Target Platforms Target Platforms Target Applications Target Applications

 ▶ HAECHI (4 nodes)

 • High-performance Applications for Extreme-scale

 Computing with Heterogeneous Infrastructure.

 - 2 CPUs (Xeon E5-2650) and 3 GPUs (HD 7950)

 - Optional: Xeon Phi (7120P), FPGA (Nallatech 395)

 ▶ Target Devices

 • One CPU and GPU

 • Node level parallelism

▶ Basic Linear Algebraic Subroutines (BLAS)

 • Core algorithms for linear solvers

 • axpy, dot, norm2, spmv

 ▶ Krylov Subspace Methods (𝑨𝒙 = 𝒃)

 • Preconditioned approaches are considered

 - To guarantee robustness for general system

 - Include preconditioned CG and BiCG

 - Approximated inverse preconditioning

Data Parallel Strategy Data Parallel Strategy

Load Balancing

min-max Model for 𝜶

Result (BLAS sgemv)

Task Parallel Strategy Task Parallel Strategy

Motivation

▶ Iterative Krylov subspace methods (KSM) are composed

 of several routines of BLAS.

▶ Data-parallel strategy is seemed to be an easy approach,

 but has poor load balancing about 9:1 (CPU:GPU) which

 was caused by performance gaps of memory bandwidth.

Implementation Issues Implementation Issues

Preconditioned KSM

▶ KSMs cover specific scopes of their usages with respect

 to characteristics of linear system.

▶ Preconditioning methods are better choices when it

 comes to consider about robustness of linear solvers.

▶ Of course, one should pay additional costs for precondi-

 -tioning which may not fit well parallel implementation.

Well-known Two Preconditioners

𝑨𝒙 = 𝒃 𝑴𝑨𝒙 = 𝑴𝒃

▶ A good preconditioner is to choose 𝑴 to be closed to 𝑨−𝟏.

▶ The heaviest cost is solving additional system 𝑴−𝟏𝒓 = 𝒅.

▶ Incomplete Factorization (IC, ILU, ILUT, …)

▶ Approximate Inverse (AINV, SAINV, …)

Tasks for Preconditioned KSM

Supplementary Accelerations (SA)

ILU ILU

Serial

Parallel

AINV AINV

Initial
Smoothing
(SOR, G-S,…)

Initial
Smoothing
(SOR, G-S,…)

KSM KSM

axpy axpy

dot dot

spmv spmv

 𝑴−𝟏𝒓 = 𝒅 𝑴−𝟏𝒓 = 𝒅

▶ Assign each task based on its characteristics.

 • CPU: good for serial algorithms, complex branches,

 frequent memory transfers.

 • GPU: good for massively data-parallel algorithms.

▶ Additional jobs run concurrently with main algorithms

 so that accelerate the total throughput as well as

 convergence speed.

▶ OpenCL fits well to the implementation of SA by

 estimating performances of each task and by scheduling

 the synchronization between heterogeneous resources.

AINV
(GPU)
AINV
(GPU)

Initial
Smoothing

(CPU)

Initial
Smoothing

(CPU)

KSM (GPU) KSM (GPU)

axpy axpy

dot dot

spmv spmv

 𝑴−𝟏𝒓 = 𝒅 𝑴−𝟏𝒓 = 𝒅

Local
dot

(CPU)

Local
dot

(CPU)

SYNC

ILU
(CPU)
ILU

(CPU)

Initial
Smoothing

(GPU)

Initial
Smoothing

(GPU)

KSM (CPU+GPU) KSM (CPU+GPU)

axpy
(GPU)
axpy
(GPU)

dot
(GPU)
dot

(GPU)

spmv
(GPU)
spmv
(GPU)

 𝑴−𝟏𝒓 = 𝒅
(CPU)

 𝑴−𝟏𝒓 = 𝒅
(CPU)

SYNC

OpenCL Scheduling

PCI express Bandwidth

Windows Problems

Integrated Processors Trials

Conclusion

▶ In the CPU case, using full processing elements (PEs) will

 affect the performance because of scheduling overheads.

 Concurrency may not be guaranteed.

▶ clCreateSubDevice() creates sub-device as even or

 specific numbers of processing elements. Sub-division

 is considered to make one PE be managed for scheduler.

▶ Benchmarking PCI express performance shows big diff-

 -rences compared to SDK benchmark programs.

▶ Time measurements

 1. Overlapping by Linux timer between clEnqueue*.

 2. Profiling queue status from Queued to End.

Device
Memory
Device

Memory
PCI

Memory
PCI

Memory
PCIe Source

Memory
Source

Memory

COPY

1.

2.

Theoretical Peak Q-E Timer

8.0 GB/s 6.1 GB/s 3.0 GB/s 2.3 GB/s

▶ CPU parking protocol runs on Windows by default.

▶ This affects the performance in terms of context

 switching overheads.

▶ Integrated processors (Sandy- and Ivy-bridge, APU)

 share memory bandwidth for both the CPU and GPU.

▶ Simultaneous memory transfer will be serialized.

▶ Heterogeneous computing with OpenCL tends to be very

 sensitive on its implementation.

▶ Relatively huge time has taken for configuring problems

 on concurrent executions.

▶ Task-parallel approach covers wider scopes of practical

 implementation, but it may be hard to split the target

 algorithm into sub-tasks.

mailto:hschu@nims.re.kr
mailto:tha@nims.re.kr

