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Task Parallelism in OpenCL Goals
- Task level parallelism can be expressed with out of order command queues. - Flexible framework for implementing out of order command queues (OocOCQ).
- Scheduling freedom of commands when respecting the explicit synchronization and event - Enable distribution of scheduling and synchronisation overhead to devices
dependencies. - Support different degrees of host orchestration vs. independent task graph execution in the
- Command queues are synchronised across all devices by the runtime, which simplifies device.

host application control logic.

a) | Command Queue 0, Device 0 Framework FunCt|OnS

A: Write Buffer =—=> B: Exec. Kernel ——=>{C: Exec. Kernel ——=> D: Read Buffer An extension to PoCL host-device/driver interface.

OoOE support can be implemented for a new device by redefining some or all of
the framework functions:

b) Command Queue 0, Device O

A: Write Buffer submit() Submits a command to the device driver.
——=> Event dependency

E: Exec. Kernel

B: Write Buffer flush() Flushes commands to the device.
Command Queue 1. Device 1 join() Used by clFinish to ensure that commands will be executed.
C: Write Buffer
e Q G: Exec. Kernel ——=>>{ H: Read Buffer broadcast() When command is completed a notification is broadcasted for all
D: Wri [ devices that have commands waiting completed command.
: Write Buffer
a) No task level parallelism notify() Used for notifying device driver that a waited event has been
b) At most 4 tasks (A, B, C, D) can be executed in parallel, if there are computational completed.

resources
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