
Heterogeneous Computing with OpenCL:  

Strategies of Utilizing both a CPU and GPU 

 

Hyoungseok Chu (hschu@nims.re.kr) and Hwansun Kim (iou78@nims.re.kr)  

 

Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences, South Korea 

Introduction Introduction 

 ▶ Goal 

    • Investigate efficient parallel strategies under  

      heterogeneous computing systems. 

    • Our research interests are of Linear Solvers  

      especially for Krylov Subspace Methods and 

      their BLAS. (axpy, dot, and spmv) 

 

 ▶ Strategies 

    • Data parallel: Load Balancing 

    • Task parallel: Supplementary Acceleration 

Motivation 

▶ Assume we have 𝒏 numbers of data parallelizable jobs. 

▶ We propose a job splitting ratio called 𝜶 which divides  

    workloads into 𝜶𝒏 and 𝟏 − 𝜶 𝒏 jobs so that assign 𝜶𝒏  

    jobs into the CPU and 𝟏 − 𝜶 𝒏 jobs for the GPU. 

For given 𝒏, find a splitting point 𝒌∗ which is the solution 

of the following min-max problem. 

𝓙 𝒌∗; 𝒏 = min
𝒌∈[𝟎, 𝒏]

𝓙(𝒌; 𝒏) 

where 𝓙 𝒌; 𝒏 = max(𝒄 𝒌 , 𝒈 𝒏 − 𝒌 ) 

 𝒄(𝒌) denotes elapsed time for input 𝒌 using CPU and 

 𝒈 𝒏 − 𝒌  denotes elapsed time for input 𝒏 − 𝒌 using GPU. 

The splitting ratio 𝜶 with given 𝒏 is defined as follows. 

    

        𝜶 𝒏 =  
𝒌∗

𝒏
. 

       𝒄 𝒏 =
𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟐)

𝑩𝑪𝑷𝑼
𝒏 +

𝒏𝟐

𝑭𝑪𝑷𝑼
+ 𝑶𝑪𝑷𝑼 

𝒈(𝒏) =
𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟏)

𝑩𝑷𝑪𝑰,𝑾
𝒏 +

𝟒𝒃𝒚𝒕𝒆𝒔

𝑩𝑷𝑪𝑰,𝑹
𝒏 +

𝟒𝒃𝒚𝒕𝒆𝒔 × (𝒏 + 𝟐)

𝑩𝑮𝑷𝑼
𝒏

+
𝒏𝟐

𝑭𝑮𝑷𝑼
+ 𝑶𝑮𝑷𝑼 

ENV: AMD OpenCL SDK 2.8, CPU: AMD FX 8120, GPU: HD7950 

Target Platforms Target Platforms Target Applications Target Applications 

 ▶ HAECHI (4 nodes) 

    • High-performance Applications for Extreme-scale 

       Computing with Heterogeneous Infrastructure. 

      - 2 CPUs (Xeon E5-2650) and 3 GPUs (HD 7950) 

       - Optional: Xeon Phi (7120P), FPGA (Nallatech 395) 

 

 ▶ Target Devices 

    • One CPU and GPU 

    • Node level parallelism  

▶ Basic Linear Algebraic Subroutines (BLAS) 

    • Core algorithms for linear solvers 

    • axpy, dot, norm2, spmv 

 

 ▶ Krylov Subspace Methods (𝑨𝒙 = 𝒃) 

    • Preconditioned approaches are considered 

      - To guarantee robustness for general system 

      - Include preconditioned CG and BiCG 

      - Approximated inverse preconditioning 

Data Parallel Strategy Data Parallel Strategy 

Load Balancing 

min-max Model for 𝜶  

Result (BLAS sgemv) 

Task Parallel Strategy Task Parallel Strategy 

Motivation 

▶ Iterative Krylov subspace methods (KSM) are composed  

    of several routines of BLAS.  

▶ Data-parallel strategy is seemed to be an easy approach,  

    but has poor load balancing about 9:1 (CPU:GPU) which 

    was caused by performance gaps of memory bandwidth. 

 

Implementation Issues Implementation Issues 

Preconditioned KSM 

▶ KSMs cover specific scopes of their usages with respect  

    to characteristics of linear system. 

▶ Preconditioning methods are better choices when it  

    comes to consider about robustness of linear solvers. 

▶ Of course, one should pay additional costs for precondi-  

    -tioning which may not fit well parallel implementation. 

Well-known Two Preconditioners 

𝑨𝒙 = 𝒃                𝑴𝑨𝒙 = 𝑴𝒃 

▶ A good preconditioner is to choose 𝑴 to be closed to 𝑨−𝟏. 

▶ The heaviest cost is solving additional system 𝑴−𝟏𝒓 = 𝒅. 

▶ Incomplete Factorization (IC, ILU, ILUT, …) 

▶ Approximate Inverse (AINV, SAINV, …) 

Tasks for Preconditioned KSM 

Supplementary Accelerations (SA) 

ILU ILU 

Serial 

Parallel 

AINV AINV 

Initial 
Smoothing 
(SOR, G-S,…) 

Initial 
Smoothing 
(SOR, G-S,…) 

KSM KSM 

axpy axpy 

dot dot 

spmv spmv 

 𝑴−𝟏𝒓 = 𝒅  𝑴−𝟏𝒓 = 𝒅 

▶ Assign each task based on its characteristics. 

    • CPU: good for serial algorithms, complex branches,  

             frequent memory transfers. 

    • GPU: good for massively data-parallel algorithms. 

▶ Additional jobs run concurrently with main algorithms  

    so that accelerate the total throughput as well as  

    convergence speed. 

▶ OpenCL fits well to the implementation of SA by  

    estimating performances of each task and by scheduling 

    the synchronization between heterogeneous resources. 
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SYNC 

OpenCL Scheduling 

PCI express Bandwidth 

Windows Problems 

Integrated Processors Trials 

Conclusion 

▶ In the CPU case, using full processing elements (PEs) will  

    affect the performance because of scheduling overheads. 

    Concurrency may not be guaranteed. 

 

 

 

▶ clCreateSubDevice() creates sub-device as even or  

    specific numbers of processing elements. Sub-division  

    is considered to make one PE be managed for scheduler. 

▶ Benchmarking PCI express performance shows big diff- 

    -rences compared to SDK benchmark programs. 

▶ Time measurements 

    1. Overlapping by Linux timer between clEnqueue*. 

    2. Profiling queue status from Queued to End.  
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Theoretical Peak Q-E Timer 

8.0 GB/s 6.1 GB/s 3.0 GB/s 2.3 GB/s 

▶ CPU parking protocol runs on Windows by default. 

▶ This affects the performance in terms of context  

    switching overheads. 

▶ Integrated processors (Sandy- and Ivy-bridge, APU)  

    share memory bandwidth for both the CPU and GPU. 

▶ Simultaneous memory transfer will be serialized. 

▶ Heterogeneous computing with OpenCL tends to be very 

    sensitive on its implementation.  

▶ Relatively huge time has taken for configuring problems  

    on concurrent executions. 

▶ Task-parallel approach covers wider scopes of practical  

    implementation, but it may be hard to split the target  

    algorithm into sub-tasks. 
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