TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPERE UNIVERSITY OF TECHNOLOGY ‘ ' KALRAY

Out of Order Execution Framework for OpenCL Implementation

Ville Korhonen (ville.t.kornonen@tut.fi), Pekka Jaaskelainen (pekka Jaaskelalnen@tut fi mpere University of Technology, Finland
Clement Leger (clement.leger@kalray.eu /Kalray, France

Task Parallelism in OpenCL Goals
- Task level parallelism can be expressed with out of order command queues. - Flexible framework for implementing out of order command queues (OocOCQ).
- Scheduling freedom of commands when respecting the explicit synchronization and event - Enable distribution of scheduling and synchronisation overhead to devices
dependencies. - Support different degrees of host orchestration vs. independent task graph execution in the
- Command queues are synchronised across all devices by the runtime, which simplifies device.

host application control logic.

a) | Command Queue 0, Device 0 Framework FunCt|OnS

A: Write Buffer =—=> B: Exec. Kernel ——=>{C: Exec. Kernel ——=> D: Read Buffer An extension to PoCL host-device/driver interface.

OoOE support can be implemented for a new device by redefining some or all of
the framework functions:

b) Command Queue 0, Device O

A: Write Buffer submit() Submits a command to the device driver.
——=> Event dependency

E: Exec. Kernel

B: Write Buffer flush() Flushes commands to the device.
Command Queue 1. Device 1 join() Used by clFinish to ensure that commands will be executed.
C: Write Buffer
e Q G: Exec. Kernel ——=>>{ H: Read Buffer broadcast() When command is completed a notification is broadcasted for all
D: Wri [devices that have commands waiting completed command.
: Write Buffer
a) No task level parallelism notify() Used for notifying device driver that a waited event has been
b) At most 4 tasks (A, B, C, D) can be executed in parallel, if there are computational completed.

resources

Example Implementations
Standalone Single Core Homogeneous CPU with Multiple Cores and/or HW Threads

- For.small embedded [, <t pevice - By default one worker Host Device
devices and soft thread per core. |
cores Host layer Device layer | Host layer Device layer DEVICE

i | Execute - Independent task graph 5 -
- No threading support i Submit icommand execution. core 0 i core n
| d i Submi | SRRRRIRRRRRRRRENS :
assumed command ; > | e ' fxecute | | |Worker thread n.
- | ; - Memory shared with the 'command | | | ;

- Host + kernels PROCRAM i DRIVER DEVICE host, low overheads. HoST > g |
possibly compiled to . ; R DRIVER ; ;
the same image | Update | - Load balancing across

levent status i cores. ‘\\\ i | |
- : Update | | [B
event status |
Devices with Task Graph Execution Capabilities Heterogeneous Platform with Shared System Address Space

@CQ IS pushed to the device [Host Device Device0 - Each device can be with

driver. | different ISA.
| Hostlayer | Device layer Host

@ Driver pushes CQ to (5) Main program - Each device can have a local
device's command buffer. — i Preo | memory.

A @ | s |

@ Events are notified to host HOST (1) | (3) | - Global memory buffers reside))
by rasing interrupt. PROGRAM DRIVER | ; in the shared host accessible Y

e | global memory. DevOCQ | .. |DevnCQ Buffers

‘ 4a) Events notified to the host " Y
that broadcasts the “'. @b) - Commands are submitted to A A A
events to the listeners OR /" oo devices command queues in Local Mem

J Main program : global memory.
Device notiﬁes peers @ ®> @ q i i Device 0 Device 1 Device n
independently. ~_ | oriver | (3) | - Events are notified to peers by : Processing element
modifying commands waitlist in Compute Compute . Processing element
Driver updates host side | other devices CQ. unit unit _
event status in any case. E— - Processing element
Devicel
Kalray MPPA-256 Manycore Processor

- PCle accelerator card with Host Device

MPPA-256 processor. Fostlver | pevice layer |
PCle card
_ Submit with

- MUltlple kernels enqueued and commands)> MPPA-256

ran simultaneously. . DI\;I{T\I;?R
PROGRAM Update

- Threads to handle transfers ispatch comman}
to/from global memory Memory
asynchronously from command trhanszer ooy memory
queue execution freads

- Transfers can be done while Kernel
kernels are executed to hide nandling I d kernel
Iatency d for scheduling

Update - . .
ool schadulina offlond command \ s This work will be contributed to

- nerhetscheduling ooading on status (< _ Portable Computing Language - an open source OpenCL
device for special cases thread o Recewe . : T ntto:// lecl
(kernel-to-kernel dependencies) implementation available at http://portablecl.org

