® codeplay”’

SYCL-BLAS: Leveraging Expression Trees for Linear Algebra

Jose Aliaga (Universitat Jaume I, Castellon, Spain),
Ruyman Reyes, Mehdi Goli (Codeplay Software)

® codeplay” © 2017 Codeplay Software Ltd.

1

About me...

 Phd in Compilers and Parallel Programming

— Created the first Open Source OpenACC implementation
 Background in HPC, programming models and compilers
— Worked in HPC Scientific Code (ScaLAPACK, GROMACs,

CP2K) !
e Contributor to SYCL Specification C Com puteCpp
e Product Lead of ComputeCpp (Codeplay’s SYCL
implementation) 5 / [

e Coordinating the work on SYCL Parallel STL C—

® codeplay”

© 2017 Codeplay Software Ltd.

What is SYCL-BLAS 7o

UNIVERSITAT

SYCL-BLAS is an implementation of BLAS functionality using IAUME]
Expression Trees on SYCL and C++.

Although it offers a BLAS interface, the important part is the
expression trees for the common operations, that can be re-

used for different functionality or to fuse multiple operations

on a single kernel.

SYCL-BLAS is a collaboration between Codeplay and Universitat

Jaume | of Castellon (Spain).
®

(codeplay

® codeplay” © 2017 Codeplay Software Ltd.

Why SYCL-BLAS

BLAS is used in many different
machine learning and scientific
does as the core computational

SYCL-BLAS offers a C++/SYCL
friendly interface that allows
mapping STL containers or SYCL

top of BLAS, or use some of its operations to those views.
computational cores (such as

Expression trees are created at

gemm). compile time to implement the
BLAS interface is divided into three BLAS interface.

levels, vector, matrix-vector and

]) , Kernels are built with offline
matrix-matrix operations

compiler (no runtime compilation)

® codeplay” © 2017 Codeplay Software Ltd.

Build Status

CLBlast: The tuned OpenCL BLAS library PSPTa Ee——— doveten
Gec/Clang x64 DD (EEEEE

master development Visual Studio x64
tnuos x EEEEERS — EHEE=E
— cIBLAS

N " _ . . .) . This repository houses the code for the OpenCL™ BLAS portion of clMath. The complete set of BLAS level 1, 2 & 3 routines
Wi m ++
CLBlast is a modern, lightweight, performant and tunable OpenCL BLAS library written in C++11. It is designed to leverage is implemented. Please see Netiib BLAS for the list of supported routines. In addition to GPU devices, the library also

the full performance potential of a wide variety of OpenCL devices from different vendors, including desktop and laptop supports running on CPU devices to facilitate debugging and multicore programming. APPML 1.12 is the most current
GPUs, embedded GPUs, and other accelerators. CLBlast implements BLAS routines: basic linear algebra subprograms generally available pre-packaged binary version of the library available for download for both Linux and Windows platforms.

operating on vectors and matrices.
The primary goal of cIBLAS is to make it easier for developers to utilize the inherent performance and power efficiency

benefits of heterogeneous computing. cIBLAS interfaces do not hide nor wrap OpenCL interfaces, but rather leaves OpenCL
state management to the control of the user to allow for maximum performance and flexibility. The cIBLAS library does
generate and enqueue optimized OpenCL kernels, relieving the user from the task of writing, optimizing and maintaining
kernel code themselves.

This preview-version is not yet tuned for all OpenCL devices: out-of-the-box performance on some devices might be
poor. See below for a list of already tuned devices and instructions on how to tune yourself and contribute to future releases
of the CLBlast library.

VexCL documentation

VexCL is a vector expression template library for OpenCL/CUDA. It has been created for ease of GPGPU development with C++. VexCL strives to reduce amount of
boilerplate code needed to develop GPGPU applications. The library provides convenient and intuitive notation for vector arithmetic, reduction, sparse matrix-
vectork products, etc. Multi-device and even multi-platform computations are supported.

The library source code is available under MIT license at https://github.com/ddemidov/vexcl.

=/iennaCL

® codeplay” © 2017 Codeplay Software Ltd.

err = clblasSetup();

bufA = clCreateBuffer(ctx, CL_MEM_READ_ONLY, M * K * sizeof(*A), //
S.I ' l.l h NULL, &err); Pure OpenCL
I I a r a pproac eS bufB = clCreateBuffer(ctx, CL_MEM_READ_ONLY, K * N * sizeof(*B), Interface

NULL, &err);
bufc = clCreateBuffer(ctx, CL_MEM_READ_WRITE, M * N * sizeof(*C),
NULL, &err);

clEnqueueWriteBuffer(queue, bufA, CL_TRUE, @,
* K * sizeof(*A), A, B, NULL, NULL);

M
= Gener‘ate kernels at runﬁme Via err = clEnqueueWriteBuffer(queue, bufB, CL_TRUE, @,
. . K * N * sizeof(*B), B, 8, NULL, NULL);
Str|ng Composrhon err = clEnqueueWriteBuffer(queue, bufC, CL_TRUE, 0,
N . . M * N * sizeof(*C), C, 8, NULL, NULL);

- Runtime compilation of kernels,

With Caching err = clblasSgemm(clblasRowMajor, clblasNoTrans, clblasNoTrans,

M, N, K,
- All define vector and matrix classes alpha, bufA, 0, lda,
. bufg, @, 1ldb, beta,

- All wrap kernel execution on a host bufc, o, 1dc,

. 1, &queue, O, NULL, &event);

library call
= Some have a more C or a more C++ err = clWaitForEvents(1, &event);

interface

. . err = clEnqueueReadBuffer(queue, bufC, CL_TRUE, O,
- The Higher level ones require M * N * sizeof(*result),
. . . result, ©, NULL, NULL);
defining host semantics and types
typedef float ScalarType;

(e'g’ a gpu VeCtor) fﬁgypedef double ScalarTy;g; //use this if your GPU supports double precision

- Writing these libraries, integrating // set up some ViennacL objects

viennacl: :vector<ScalarType> vcl_rhs;

USIng CUStom typeS viennacl: :vector<ScalarType> vcl_result;

viennacl: :matrix<ScalarType> vcl_matrix;

challenging
for CPU/GPU J* Set up and fill matrix in std matrix here */

/* Set up and fill load vector in std rhs here */
\ // copy data to GPU:
copy(std_rhs.begin(), std_rhs.end(), vcl_rhs.begin());

copy(matrix, wvcl_matrix);

them and combining multiple is

// Compute matrix-vector products
vcl_result = viennacl::linalg::prod(vcl_matrix, vcl_rhs); //the ViennaCL way

.COdeplay!‘ // Compute transposed matrix-vector products _
vel_result_trans = viennacl::linalg::prod(trans(vcl_matrix), vcl_rhs_trans);

The SYCL-BLAS approach

SYCL already define all the host
integration interface and
semantics.

Developers can focus on kernel
and performance.

Any SYCL-based library
automatically integrates with
other libraries and with C++.
(almost) No need for custom
backends: SYCL implementation
provides the final mile

IExecutnr£STEL> ex(q);:

{

¢+ SycL

buffer<double, 1> bX(vX.data(), range<l={vX.size()}).
buffer<double, 1> bY(v¥.data(), range<l={v¥.size()}),

Buf ferVectorView<double> bvi{bX);
Buf ferVectorView<double> bvY{bY);

_axpy=5YCL>{ex, bX.get_count{), 1.0, bwX, 1, bv¥, 1))

Calling axpy on SYCL BLAS. Only Red boxes are
library specific.

searchitems Publication reads

Demonstrating C++/SYCL productivity

~80% of SYCL-BLAS code so far has been
implemented by Dr. Aliaga (co-author), during a
research visit to Codeplay Edinburgh, from July to
August 2016 (1.5 Months). Dr. Aliaga has a strong
background in Dense and Sparse Linear Algebra,

Clusters and CUDA, working mainly in Fortran and
C.

José |. Aliaga

PhD in Computer Science

1 '45 5 3 S,I View stats overview “ Universitat Jaume |

Department of Computer Science and Engineeri
unERSTAT

Citations

You follow José. Unfollow

ing

He didn’t know SYCL or advanced C++ when he
started in July. He got a crash course on template
metaprogramming and some assistance. Started
SYCL-BLAS from scratch.

There was no public version of ComputeCpp at
the moment. He worked with the internal
development version of the time.

At the end of the visit, SYCL-BLAS had level 1 and
2 functions implemented, together with an initial
gemm implementation.

BLAS Level 1

Name Operation Actions
_copy y=x Assign_Vector
_swap y e X Swap_Vectors
_scal y = ax Scale_Vector & Assign_Vector
_axpy y=ax+y Scale_Vector & Add_Vectors & Assign_Vector
_asum | res = > |x Reduction
i_amax | k,|xx| = max]|x;| | Special_Reduction
_dot res =y x Prd_Vectors & Reduction
nrm2 | res = VxTx Prd_Vector & Reduction & Scal_Oper
_rotg (c,8) = (e, B) Scalar_Oper
ot X =8=xy+c=+x | Scale_Vector & Add_Vectors &

y=Cxy—Sx*X

Doble_Assign_Vectors

Expression Tree
Structure

alpha

There are three types of nodes Add_Vecs

® Views: Wraps a reference to a
container with some extra
information (e.g. stride) y

® Operations: Classes that define

operations involving views or

scalars .' ter_nplate <typename ExecutcrType, lypena.me T, lypena_me ContainerTs>
. 2| void _axpy (Executor<ExecutorType> ex, int _N, T _alpha,
® Executors: Evaluates the expression 3 OperVectorView<T, ContainerT> _vx, int _incx,
tree = OperVectorView<T, ContainerT> _vy, iRNt _incy)
. 5 // Creation of the operands and constants
We use make functions to create the 6 auto my_vx = OperVectorView<T, ContainerT>(_vx, _vx.getDisp(), _incx, _N);
nodes and enable auto-deduction. auto my_vy = OperVectorView<T, ContainerT>(_vy, _vy.getDisp(), _incy, _N);
8 // Definition of the expression tree
9 auto scalOp = make_prdScalar(_alpha, my_vx);
10 auto addOp = make_addBinary (my_vy, scalOp);
11 auto assignOp = make_assign(my_vy, addOp);
12 // Execution of the expression tree
13 ex.execute (assignop) ;

® codeplay”

Kernel fusion

Nodes from different operations can be
fused together in the same kernel.

E.g: Multiple AXPY operations can be
combined on the same kernel dispatch
if independent.

The Join node fuses multiple nodes into
a single one

Using kernel fusion we reduce the
number of data transfers and the
overhead of the kernel launch.

® codeplay”

concatenate both operations
auto
auto
auto

alpha

auxz?

Y

Reduction

If a dé®BHEPRYNts to fuse these expression tree.. © 2017 Codeplay Software Ltd.

template <typename ExecutorType, typename T, typename ContainerT>
2| void _two_axpy_dot (.. alphal,.. _wxl,.. _wyl,.. alpha2,..._wvx2,.. _vy2, .._rs,..
b
3 // Creation of the operands and constants for 1lst axpy
4 auto my_vxl = OperVectorView<T, ContainerT>(_wxl, _vxl.getDisp(), incxl, _N);
5 auto my_vyl = OperVectorView<T, ContainerT>(_vyl, _vyl.getDisp(), incyl, _MN);
6 // Definition of the expression tree for 1st axpy
i auto scalOpl = make_prdScalar(_alphal, my_vxl);
8 auto addopl = make_addBinary(my_vyl, scalOpl);
9 auto assignOpl = make_assign(my_vyl, addOpl);
10 // Creation of the operands and constants for Znd axpy
auto my_vx2 = OperVectorView<T, ContainerT>(_wx2, _vxZ.getDisp(), _incx2, _N);
12 auto my_vy2 = OperVectorView<T, ContainerT>(_wy2, _vy2.getDisp(), _incy2, _MN);
13 // Definition of the expressicon tree for 2nd axpy
14 auto scalOp?Z = make_prdScalar(_alpha2, my_vxZ);
15 auto addopz = make_addBinary (my_vyZ, scallOp2);
16 auto assignCOp2 = make_assigni(my_vyZ2, addOp2);
17 // Join both axpy’s
18 auto JjoinOp = make_join (assignOpl, assignOp2);
19 /¢ Creation of the operands and constants for the reducticn
auto lcocalSize = 256;
auto nwc = 512;
auto my_rs = OperVectorView<T, ContainerT>(_rs, _rs.getDispi(), 1, 1);
// Definition of the expressicn tree for the dot
auto prdip = make_prdBinary (my_vx, my_wvy);
auto assignOp3 = make_addReduchAssignMNewOpZ2 (my_rs, prdOp, localSize, localSizesx
nW3) ;
/¢ Executicn of the expressicn tree
ex.reduce (assignOp3);
28

... can®£REeRAY 1+ code to fuse it © 2017 Codeplay Software Ltd.

Speedup over cIBLAS
DAXPY, Intel OpenCL CPU

Performance \

We obtain speedup over cIBLAS
on Intel CPU ol

® codeplay” © 2017 Codeplay Software Ltd.

Speedup over clBLAS
DAXPY, AMD R9 Nano

0.8

Performance

0.6

Speedup

04+

But not on the GPU

o
O

Possibly due to
missing vector
load/store nodes

3]
.
.
[3]
§
[)
[)
%

Size

® codeplay” © 2017 Codeplay Software Ltd.

Speedup

Using fusion improves performance on all platforms

Speedup over clBLAS Speedup over clBLAS
DAXPY, AMD R9 Nano DAXPY, Intel CPU

14

12 10

0.8} | o
6
N—__/__-—'—"— E
a
0.6} - A
4
0.4t
— sycl p) — sycl
0.2 — sycl_fusion2 || — sycl_fusion2
— sycl_fusion4 — sycl_fusion4d
096 196 256 512 718 1024 2048 4096 8192 16384 65536 P28 196 256 512 718 1024 2048 4096 6192 16384 65536

Experiments Experiments

Status and Future work

Status

BLAS LVL1 and LVL2 implemented.
GEMM from LVL 3 prototype
implementation available.

Currently analyzing performance of
LVL1, identifying performance
bottlenecks (e.g, missing vload/vstore
functions).

Working on a higher-level DSL using
operator overloading to simplify re-

using nodes and express kernel fusion.

Planning to use multi-stage
programming

How do we use SYCLBLAS:

|Ideas and experimental
approaches are tested/designed in
SYCL-BLAS, then ported to other
frameworks (e.g, Eigen).

Providing feedback to the
committee and to the
ComputeCpp implementation, e.g:
missing vload/vstore from
specification!

Provide feedback to our Eigen/TF
work

Branch: master « New pull request Create new file Upload files Find file m

l Ruyk committed on GitHub Fixes to enable building sycl-blas without clblas (#9) .- Latest commit ece67af 13 days ago
benchmark a month ago
cmake/Modules onth ago
doc 7 months ago
include a month ago
tests Fixes to enable buildi Dl U s (#9) 13 days ago

' clang-format Prototype of the SYCL BLAS implementation 7 months ago
Py .gitignore Prototype of the SYCL BLAS implementation. 7 months ago
CMakeLists.txt Fixes to enable buildi las without clblas (#9) 13 days ago

Contributors.md Prototype of the SYCL BLAS implementation 7 months ago
LICENSE.md Prototype of the SYCL BLAS implementation. 7 months ago
README.md Updated Readme 2 months ago
Roadmap.md Prototype of the SYCL BLAS implementation 7 months ago

README.md

Interns and research visitors coming SYCL BLAS Implementation
baCk to Ed i n bu rg h Ove r th e S u m m er SYCL BLAS implements BLAS - Basic Linear Algebra Subroutines - using SYCL 1.2, the Khronos abastraction layer for

OpenCL.

SYCL BLAS is a current work in progress research project from an ongoing collaboration with the High Performance
Computing & Architectures (HPCA) group from the Universitat Jaume | UJI.

SYCL BLAS is written using modern C++. The current implementation uses C++11 features but we aim to move to C++14 in
the short term. See Roadmap for details on the current status and plans for the project.

https://github.com/codeplavs_.'dﬁw'are/svcl-blas

® codeplay” © 2017 Codeplay Software Ltd.

https://github.com/codeplaysoftware/sycl-blas

@® codeplay”

Thanks for your attention

@codeplaysoft info@codeplay.com codeplay.com

© 2017 Codeplay Software Ltd.

19

	Slide 1
	Slide 2
	Slide 3
	Why SYCL-BLAS
	Slide 5
	Similar approaches
	The SYCL-BLAS approach
	Demonstrating C++/SYCL productivity
	BLAS Level 1
	Expression Tree Structure
	Kernel fusion
	Slide 12
	Slide 13
	Performance
	Performance
	Using fusion improves performance on all platforms
	Status and Future work
	Help Wanted!
	Thanks for your attention

