
Adding OpenCL to Eigen with SYCL
Mehdi Goli, Luke Iwanski, Andrew Richards

May 2017

© 2017 Codeplay Software Ltd.2

Agenda
● Eigen

– Expression Tree
– Fusion

● Why SYCL?
● Requirements
● Challenges

– Address Spaces

– Explicit Data Movement

● Benchmarks
● What next?
● Questions?

© 2017 Codeplay Software Ltd.3

Eigen
● C++ based high-performance dense linear

algebra library.
● Modular

– Linear algebra, matrix / vector operations,
geometrical transformations, numerical
solvers and related algorithms

– Tensor (heavily used by TensorFlow)

● Headers only
● Expression templates meta-programming

technique
● Generates compile-time DSL/EDSL based on

the expression tree.
● Currently supports CPU and NVIDIA CUDA

back-end and now SYCL

© 2017 Codeplay Software Ltd.4

A = B * C + D → →

Expression Tree

© 2017 Codeplay Software Ltd.5

Fusion

● Kernel1: C = A*A + B*B

● Kernel2: C1 = A1*A1 + B1*B1

● Kernel3: D = C + C1

● Fused: D = A*A + B*B + A1*A1 + B1*B1

© 2017 Codeplay Software Ltd.6

Why SYCL?

● SYCL is a standard – not “yet another proprietary solution” bound to a specific device family
● SYCL can dispatch device kernels from C++ application, similar to CUDA
● OpenCL 1.2 does not support C++
● OpenCL 2.1 does support C++ templates inside the kernel

● But, the kernel itself cannot be a template, therefore we still need different kernel registration
per type

● Expression of the tree-based kernel fusion is challenging without embedding a custom compiler
● Single-source programming model

● No need to implement separate kernel code for each operation
● Re-use of the existing template code for both host and device is possible
● OpenCL would need reimplementation of the back-end – maintenance overhead

© 2017 Codeplay Software Ltd.7

Requirements

● The back-end must be non-intrusive
● Must re-use the existing code and modules in order to reduce maintenance effort
● Must exploit compile-time template meta-programming techniques in order to reduce

the runtime overhead
● Must be consistent with the existing API design
● Open-Source projects do not like major changes in their existing code base

© 2017 Codeplay Software Ltd.8

Challenge: Address Spaces

● Eigen expression specialisation uses Scalar pointer
● The difference in approaches: raw pointers (CPU/CUDA) VS. accessors and buffers

(SYCL 1.2 /OpenCL 1.2)
● cudaMalloc returns “persistent pointer” that stays the same across kernels
● OpenCL 1.2 cl_mem object may be translated to non-persistent pointers – they might

change across kernels
● OpenCL 2.x solves it via SVM
● Our target is 1.2 with wider range of targeted devices including mobile and

embedded

© 2017 Codeplay Software Ltd.9

A = B * C + D → →

Solution: Address Spaces

© 2017 Codeplay Software Ltd.10

 The terminal nodes are counted recursively at
compile time in order to replace each terminal
node with a place-holder number
 the place-holder number corresponds to the

location of the relevant accessors in the
accessors list

 Depth First Search algorithm is used both to:
 label the leaf nodes (data nodes)
 extract the accessors

Solution: Address Spaces

© 2017 Codeplay Software Ltd.11

 The place-holder tree is recursively traversed in order to:
 Re-instantiate the expression tree on the SYCL device

 The host data pointer in the leaf node is replaced with
the corresponding accessors from the accessors list

A’

B’ C’

D’

Solution: Address Spaces

© 2017 Codeplay Software Ltd.12

Challenge: Explicit Data Movement

● SYCL programming model is based on implicit data movement, but Eigen has its own
data movement interface. These two approaches conflict.

● Eigen's device class provides its own pluggable scheduler for higher-level applications
● Each device can specify its interface - C-style design – methods:
● allocateMemory, deallocateMemory, memcpy, memcpyHostToDevice,

memcpyDeviceToHost, memset
● Pointer is void and independent from the data type

© 2017 Codeplay Software Ltd.13

Solution: Explicit Data Movement

● On the host side a buffer is created for each host pointer
● The buffer life time is coupled with that of the SYCL device instead of the

expressions
● All the interface functions explicitly manipulate the corresponding SYCL buffer

© 2017 Codeplay Software Ltd.14

Intel(R) Core(TM) i7-6700K CPU 4.00GHz VS AMD R9 Nano

© 2017 Codeplay Software Ltd.15

What next?

● The current version of Eigen is the initial release of the SYCL back-end.

● Next steps are optimisation improvements and vectorisation

● We’ll keep you posted!

© 2017 Codeplay Software Ltd.16

Thanks!
Questions?

luke@codeplay.com

https://sycl.tech
https://bitbucket.org/mehdi_goli/opencl

mailto:luke@codeplay.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

