
Krzysztof Laskowski, Intel

Pavan K Lanka, Intel

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

• All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

• All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. All dates specified are target dates, are provided for planning purposes only
and are subject to change.

• This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your
local sales office that you have the latest datasheet before finalizing a design.

• Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to
use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

• Intel, Intel Inside, Intel Atom and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.

• Other names and brands may be claimed as the property of others.

• Copyright © 2015-2016, Intel Corporation. All rights reserved.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Executive Summary

• Efficient scheduling of work to GPU is important for overall
performance of applications.

• The discussed optimization aims to fully utilize the General Purpose
Graphics Processing Unit (GPGPU) Pipeline taking into consideration:

� Workload characteristics

� How the hardware actually works.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Challenge

• Many general purpose Execution
Units (EUs) and dedicated Fixed
Function HW blocks.

• The compute power of Intel®
Processor Graphics is
continuously growing over
generations.

• How to efficiently use all the
compute power of the GPU for
various workloads?

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Goal

Enable independent kernels to execute
simultaneously whenever possible to keep all GPU

assets busy

Step 1.

Step 2.

Step 1.

K
e
rn
e
l
#
1

K
e
rn
e
l
#
2

K
e
rn
e
l
#
1

K
e
rn
e
l
#
2

Notification #1

Notification #2

Notification #1

Notification #2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Solution: Alternatives Considered: In-Order

• Do the optimization implicitly as part of the default In-Order
Execution Model.

In-order Execution: A model of execution in OpenCL where the commands in a command queue

are executed in order of submission with each command running to completion before the next one
begins.

• OpenCL Runtime needs to detect independent kernels in the
sequence of commands and remove the synchronization points
between them.

• Not feasible due to Shared Virtual Memory (SVM) related corner
cases for which the optimization would break the In-Order
Execution model requirements.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Solution: Alternatives Considered: Out-of-Order

• Add support for Out-of-Order Execution Model.

Out-of-Order Execution: A model of execution in which commands placed in the work queue

may begin and complete execution in any order consistent with constraints imposed by event wait
lists and command-queue barriers.

• Application is responsible for specifying the right dependencies between
enqueues.

Leverage the existing Out-of-Order Execution model for the
optimization

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Solution: Overview

CMD 1

CMD 2

CMD 3

CMD 4

CMD 5

CMD 6

CMD 1

NOTIFY 1

CMD 2

NOTIFY 2

CMD 3

NOTIFY 3

CMD 4

NOTIFY 4

CMD 5

NOTIFY 5

CMD 6

NOTIFY 6

CMD 1

CMD 2

CMD 4

NOTIFY 1

NOTIFY 2

NOTIFY 4

CMD 3

CMD 6

NOTIFY 3

NOTIFY 6

CMD 5

NOTIFY 5

CMD 3

CMD 5

CMD 6

CMD 5

OpenCL Commands

In-Order Queue Optimized Out-Of-Order Queue

Blocked

Blocked

Head

Tail

CMD 3 depends on CMD 1
CMD 5 depends on CMDs 2,3
CMD 6 depends on CMD 2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Key Results: VME+GPGPU

• VME (Video Motion Estimation) extension available in
Intel’s OpenCL uses a dedicated functional HW units to
perform motion estimation algorithm and calculate the
motion vectors.

• VME kernel still needs some EUs but number of EUs
used for this purpose may be limited.

• In the optimized Out-of-Order Execution solution we can
potentially execute the VME kernel in parallel with
regular GPGPU OpenCL kernels.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Key Results: VME+GPGPU

• Time(VME kernel) == Time(GPGPU kernel) == T

• Ideally: Time(VME kernel + GPGPU kernel) == T (2x gain)

Intel® HD Graphics 5500 Intel® Iris™ Graphics 6100

Time Time

Total execution time: 2.2s �1.6s (1.4x) Total execution time: 0.9s �0.6s (1.3x)
0

0.5

1

1.5

2

2.5

VME + GPGPU

time (In-order)

VME + GPGPU

time (Optimized

out-of-order)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VME + GPGPU time

(In-order)

VME + GPGPU time

(Optimized out-of-

order)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Small data sets – do multiple streams

• Another use case is executing multiple streams of general purpose
commands operating on independent sets of data.

• An example is a matrix multiplication application

14

Key Results: Multiple independent operations

Large data set

(GPU EUs)(GPU EUs)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Multiple matrix multiply operations (naïve algorithm) for different matrix sizes.

0

2

4

6

8

10

128 256 512 1024

Performance (In-Order)

Performance (Optimized out-of-Order)

0

5

10

15

20

128 256 512 1024

Performance (In-Order)

Performance (Optimized out-of-Order)

0

2

4

6

8

10

128 256 512 1024

15

Key Results: Multiple independent operations

0

5

10

15

20

128 256 512 1024

Intel® HD Graphics 5500 Intel® Iris™ Graphics 6100

Matrix size Matrix size

HW configuration
Intel® HD
Graphics 5500

Intel® Iris™
Graphics 6100

Threads available 168 336

Matrix size (NxN) 128 256 512 1024

Threads used 8 32 128 512

2.6x up 5.4x up

Application thread usage statistics: Threads available in HW:

max max

P
e
rf
o
rm
a
n
c
e

P
e
rf
o
rm
a
n
c
e

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Challenges & TODOs

• Out-of-Order Execution model is an opt-in feature.

• Developers need to adapt to the new model.

• Need to be aware of:

• Limited GPU resources

• OS restrictions

• With Event Profiling we can’t guarantee parallel execution benefits.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Efficient use of Out-of-Order Queues

• Create an out-of-order command queue in the following manner:
cl_command_queue_properties qProperties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;
cl_command_queue queue = clCreateCommandQueue(context, deviceIds[0], qProperties, &error);

• Avoid CL_QUEUE_PROFILING_ENABLE property with Out-of-Order Queues as it
may severely limit the expected performance gains.

• Identify independent tasks that can run in parallel and prepare them to execute
through one Out-of-Order command-queue:

for (cl_uint i = 0 ; i < iterations ; i++)
{

clEnqueueNDRangeKernel(queue, vme_kernel, 2, NULL, vme_gws, NULL, 0, NULL, NULL);
clEnqueueNDRangeKernel(queue, gpgpu_kernel_1, 1, NULL, gpgpu_gws_1, NULL, 0, NULL, NULL);
clEnqueueNDRangeKernel(queue, gpgpu_kernel_2, 1, NULL, gpgpu_gws_2, NULL, 0, NULL, NULL);
//(etc.)

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Effiecient use of Out-of-Order Queues

• For each stream of commands avoid flushing or blocking operations such as
clFlush, clFinish, clWaitForEvents or blocking enqueue commands and
manage dependencies with event wait-lists, for example:

cl_event events[streams];
for(int s = 0; s < streams; s++)
{

clEnqueueNDRangeKernel(queue, gpgpu_kernel, 1, NULL, gpgpu_gws, NULL, 0, NULL, &events[s]);
clEnqueueMapBuffer(queue,

buffer_arg1,
CL_FALSE, //non-blocking map
CL_MAP_READ,
0,
buffer_size,
1, &events[s], 0, &err);

}
clFinish(queue);

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Remarks

• Be aware of limited GPU resources and OS restrictions when expecting parallel
execution benefits.

• When using Out-of-Order queues explicitly manage dependencies between
enqueues through events and event_waitlists arguments as there is no in-
order execution guarantee.

• The speed-up is observed in the total execution time of multiple commands
when enqueued together into the same Out-of-Order command queue.
Particular performance gains vary and depend on the workload and a given
HW configuration characteristics.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Conclusion

• Our optimized Out-of-Order implementation can speed up your application
several times (up to 1.4x or 5.4x in our experiments) depending on
workload characteristics and HW behavior/configuration.

Better HW utilization and better performance per Watt
in many applications

