
SYCL Bindless Images

Sean Stirling, Codeplay

Sean Stirling, Isaac Ault, Duncan Brawley, Przemek Malon, Alastair Murray, 

Chedy Najjar, and Peter Žužek



Agenda

• Intro
• The Importance of Images
• Bindless Textures – A Brief History

• Why Are Current SYCL Images Insufficient?
• SYCL Bindless Images
• Additional Interoperability Functionality
• Q&A



• Filtering

• Addressing Modes

• Texture Cache

• Image Types

The Importance of Images

[4] (Alexander Overvoorde, Texture mapping, Image view and sampler)

Copyright Vulkan Tutorial



• Blender

• Cinebench 2024

The Importance of Images

Blender is a registered trademark (®) of the Blender Foundation in EU and USA

Copyright Maxon

https://www.blender.org/


Once Upon A Time...



• OpenGL introduced the binding of objects:
• -> bound to context
• -> bound to other container objects (e.g. vertex array objects)
• Replaces context state variable manipulation
• Far smaller API stream – order of magnitude speedup

• The modern CPU bottleneck
• Each bind – several reads of object data
• Each read – multiple dereferences
• Each dereference – likely CPU L2 cache miss

Bindless Textures – A Brief History

[2] (NVIDIA, Gernot Ziegler, Textures & 
Surfaces, CUDA Webinar, 2011, slide 4)

Copyright Nvidia Corporation



• Still want to use objects, but more directly
• By GPU address (or handle) - driver feeds back at creation 

time
• Driver no longer has to fetch GPU address from sysmem

• Huge speedup – 7x according to NVIDIA[1]

• Introduced:
• OpenGL extension (2009)
• CUDA as Bindless Textures (2012)

Bindless Textures – A Brief History

[3] (NVIDIA, Gernot Ziegler, Textures & 
Surfaces, CUDA Webinar, 2011, slide 5)

Copyright Nvidia Corporation



Present Day



• All modern GPU APIs work this way

• SYCL images make use of these APIs as backends
• Not much performance boost to be expected then

• So, what's the problem?
• Googling Bindless Images will only lead to the preceding history lesson

Present Day



SYCL Images



The rigid abstractions and lack of past development interest that define 
SYCL images have led to:

• Lacklustre Flexibility
• Tenuous Control
• Feature Sparsity
• Translation Difficulties for to-SYCL porting tools

Why are current SYCL images insufficient?



• Lacklustre Flexibility
• Tenuous Control
• Feature Sparsity
• Translation Difficulties

Why are SYCL images insufficient?

• Forced to request access through accessors

• Number of images must be known at 
compile-time

• No dynamic arrays
• Virtual texturing is impossible

• Compile-time constraints on static arrays
• Must have the same number of dimensions



• Lacklustre Flexibility
• Tenuous Control
• Feature Sparsity
• Translation Difficulties

Why are SYCL images insufficient?

• No control over how images are stored on 
device

• No USM images
• No choice between layouts/encodings (tile swizzle, 

linear/pitched, etc.)

• No distinction between device image data 
and the image itself

• Limited choice over how image data is 
copied to/from the device



• Lacklustre Flexibility
• Tenuous Control
• Feature Sparsity
• Translation Difficulties

Why are SYCL images insufficient?

• Lack of image types
• No mipmaps
• No cubemaps

• No sub-region copies

• No per-dimension addressing modes



• Lacklustre Flexibility
• Tenuous Control
• Feature Sparsity
• Translation Difficulties

Why are SYCL images insufficient?

• Poor mapping to CUDA

• Difficult translation for SYCLomatic



SYCL Bindless Images



• Inspired by the lightweight nature of CUDA Bindless Textures
• Separate image data allocation from image creation
• Treat all images as opaque handles

• Highly Flexible
• Full Control
• Feature Rich
• Simplistic to-SYCL translation

SYCL Bindless Images – DPC++ Extension



• Opaque image memory 
handle
• Device optimized 

layout/encoding

• RAII wrapper
• Allocated image memory on 

construction
• Deallocates image memory on 

destruction
• Contains image descriptor

Image Memory



• Represents all possible 
supported image properties

• Must be the same for 
allocation and creation

• Easy to construct
• Prevents invalid/unsupported 

image property combinations

Image Descriptor Note: bringing back 
SYCL 1.2.1 image 

channel order and type



Image Memory Allocation

• Standalone

• RAII wrapper



• Additional pitched allocation functionality
• Pads image rows for optimized device memory access
• USM – on device only
• 2D images only

Image Memory Allocation



• Copies to/from:
• Opaque image memory handles
• Pitched USM allocations
• Host allocations

• HtoD, DtoH
• DtoD (coming soon!)

• Sub-region copies!

Additional Copy Functions



• Opaque image handles
• Two handle types

• Unsampled images
• Sampled images

• Image handle creation on USM allocated memory
• Sampled images only

• Easy to create and use
• Must be destroyed when finished with

Opaque Image Handles



Opaque image handles

• Simple
• Easily passed to the kernel

• The distinction creates 
useful compile-time 
constraints
• No writing to sampled 

images!

• Maps well to SYCL 2020 
and CUDA

• Two handles to represent 
all image types



Unsampled Image Handle

• Fetch
• Write
• No sampling
• No USM

• Device optimized 
layout only



Sampled Image Handle

• Read only
• Hardware sampling capabilities
• Can be backed by

• Device optimized layout/encoding
• USM allocated memory

• Sampler is tied on creation



Creating Image Handles

Unsampled Sampled



• A new sampler object
• Exposes numerous & diverse image 

sampling capabilities
• (=) Addressing modes

• (+) Unique modes per dimension
• (=) Coordinate normalization mode
• (=) Filtering Modes
• (+) Mipmap Filtering

• (+) LOD filtering
• (+) Anisotropic filtering

• (+) Cubemap seamless filtering

Bindless Sampler



Kernel fetch, write, and HW sample

Unsampled Sampled



• Images can be read from, 
written to, and sampled using 
user defined types

• Must be trivially copyable

• Hint type required

User Defined Types



• Mipmaps
• LOD Filtering
• Anisotropic Filtering

• Image Arrays

• Cubemaps
• Seamless Filtering

Varied Image Types

[4] (Alexander Overvoorde, Texture mapping, Image view and sampler)

Copyright Vulkan Tutorial

[5] (Scali, Cubemaps, 2013)



• Similar code between image types

• Just make sure the descriptor is constructed appropriately

• Some nuance required with mipmaps
• Mipmaps are copied to on a level-by-level basis

Varied Image Types



Varied Image Types

Descriptor

Create

Copy • Standard
• Arrays
• Cubemap

Allocate



Varied Image Types

Mipmaps Image Arrays Cubemaps

• Unsampled

• Sampled
• Fetch
• LOD Filtering
• Anisotropic 

Filtering

• Unsampled
• Fetch
• Write

• Sampled (coming soon!)
• Fetch
• Sample

• Unsampled
• Fetch
• Write

• Sampled
• Fetch
• Sample

-Supported
-Won't support
-Coming soon



One more thing...



• Additional interoperability 
functionality

• Vulkan
• DirectX12

• Import external image memory
• No copies!

• Import external synchronization 
primitives

• Wait on, or signal, external semaphores

Interop

The Vulkan and SYCL logos are trademarks of the Khronos Group



Importing external memory

• Standard and mipmap images
• Image arrays and cubemaps coming soon

• Simple two steps
• Import the external memory
• Map the imported memory to a usable memory object

• USM pointer (coming soon)
• image_mem_handle

• Free to create an image on the imported memory
• Fetch/sample/write from/to the externally allocated memory



Importing external image memory

From external API

Declare the 
external mem 
descriptor

Map the interop 
handle to an 
image_mem_handle

Must match 
external API image 
layout

Create the 
interop handle

Create an image 
backed by imported 
memory!



Importing external synchronization primitives

• Even simpler one stage process
• Import the external semaphore

• Wait on or signal the external semaphores



Importing external synchronization primitives

From external API

Setup external 
semaphore 
descriptor

Import the 
semaphore

Wait on or signal 
the external 
semaphore!



Have we achieved our goal?



Flexible

Controllable

Have we achieved our goal?

Feature-rich

Translatable

• No accessors or rigid 
abstractions

• Simple handles
• Memory and Image
• No constraints on how to store these handles – 

vs compile-time constraints on static arrays

• Dynamic arrays
• Any number of images

• Varied image types
• Mipmaps

• Image arrays

• Cubemaps

• Sub-region copies

• Per-dimension addressing 
modes

• A choice of how images are 
stored on device

• USM backed images – Linear/pitched

• Device optimized

• Distinction between device image 
data and the image handle

• Full choice over how/when image 
data is copied to/from the device

• Conforms well to CUDA
• And other compute APIs/languages

• Much simpler translation 
for SYCLomatic



• NVIDIA/CUDA
• Fully supported

• Intel/Level Zero
• Level Zero extension
• SPIR-V extension - https://github.com/intel/llvm/pull/12927

• Converting handles to SPIRV Images & Sampler
• Being implemented as I speak

• A first revision will implement standard Bindless Images and interop functionality
• Future work will include the additional image types

• AMD/HIP
• Lower priority
• Straightforward port from CUDA implementation

• OpenCL
• No priority

Backend/Device Support

https://github.com/intel/llvm/pull/12927


• Currently working towards revision 6

• View the spec here: 
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental
/sycl_ext_oneapi_bindless_images.asciidoc

DPC++ Extension



• Support for bindless images in:
• Level Zero & SPIR-V (Intel GPUs)
• AMD HIP

• Performance
• Closely work with Blender
• Profiling, benchmarking, and optimization

• Future revisions
• Combined image types (mipmapped arrays, mipmapped cubemap, etc.)
• More interoperability

• More image types (image arrays, cubemaps)
• More APIs and resource types (KMT handles)
• Export image memory (maybe)

• Prepare a KHR extension
• To replace SYCL 2020 images
• There's interest in integrating SYCL Bindless Images in SYCL Next

Future Work



• [1] Bindless Graphics Tutorial https://www.nvidia.com/en-us/drivers/bindless-graphics/

• [2] NVIDIA, Gernot Ziegler, Textures & Surfaces, CUDA Webinar, 2011, slide 4, 
https://developer.download.nvidia.com/opengl/tutorials/bindless_graphics.pdf

• [3] NVIDIA, Gernot Ziegler, Textures & Surfaces, CUDA Webinar, 2011, slide 
5, https://developer.download.nvidia.com/opengl/tutorials/bindless_graphics.pdf

• [4] Alexander Overvoorde, Texture mapping, Image view and sampler, https://vulkan-
tutorial.com/Texture_mapping/Image_view_and_sampler

• [5] Scali, Cubemaps, 2013, https://scalibq.wordpress.com/2013/06/23/cubemaps/

Citations

https://www.nvidia.com/en-us/drivers/bindless-graphics/
https://developer.download.nvidia.com/opengl/tutorials/bindless_graphics.pdf
https://developer.download.nvidia.com/opengl/tutorials/bindless_graphics.pdf
https://vulkan-tutorial.com/Texture_mapping/Image_view_and_sampler
https://vulkan-tutorial.com/Texture_mapping/Image_view_and_sampler


No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service 
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other 
Intel marks are trademarks of Intel Corporation or its subsidiaries. 

Other names and brands may be claimed as the property of others.

Disclaimers

A wee bit of legal



Q&A

Thank you!


	Slide 1
	Slide 2: Agenda
	Slide 3: The Importance of Images
	Slide 4: The Importance of Images
	Slide 5: Once Upon A Time...
	Slide 6: Bindless Textures – A Brief History
	Slide 7: Bindless Textures – A Brief History
	Slide 8: Present Day
	Slide 9: Present Day
	Slide 10: SYCL Images
	Slide 11: Why are current SYCL images insufficient?
	Slide 12: Why are SYCL images insufficient?
	Slide 13: Why are SYCL images insufficient?
	Slide 14: Why are SYCL images insufficient?
	Slide 15: Why are SYCL images insufficient?
	Slide 16: SYCL Bindless Images
	Slide 17: SYCL Bindless Images – DPC++ Extension
	Slide 18: Image Memory
	Slide 19: Image Descriptor
	Slide 20: Image Memory Allocation
	Slide 21: Image Memory Allocation
	Slide 22: Additional Copy Functions
	Slide 23: Opaque Image Handles
	Slide 24: Opaque image handles
	Slide 25: Unsampled Image Handle
	Slide 26: Sampled Image Handle
	Slide 27: Creating Image Handles
	Slide 28: Bindless Sampler
	Slide 29: Kernel fetch, write, and HW sample
	Slide 30: User Defined Types
	Slide 31: Varied Image Types
	Slide 32: Varied Image Types
	Slide 33: Varied Image Types
	Slide 34: Varied Image Types
	Slide 35: One more thing...
	Slide 36: Interop
	Slide 37: Importing external memory
	Slide 38: Importing external image memory
	Slide 39: Importing external synchronization primitives
	Slide 40: Importing external synchronization primitives
	Slide 41: Have we achieved our goal?
	Slide 42: Have we achieved our goal?
	Slide 43: Backend/Device Support
	Slide 44: DPC++ Extension
	Slide 45: Future Work
	Slide 46: Citations
	Slide 47
	Slide 48

