
Optimisation and Evaluation of Breadth First Search
with oneAPI/SYCL on Intel FPGAs: from Describing
Algorithms to Describing Architectures

Kaan Olgu (University of Bristol)
Tobias Kenter (Paderborn University), Jose Nunez-Yanez (Linkoping University),
Simon Mcintosh-Smith (University of Bristol)

1

High Performance Computing (HPC) Group - University of Bristol 2

We all have a mutual connection with Pep Guardiola!
For my case :
No, I am not a professional footballer
Yes, we are bald, but that’s not the only connection!

Kaan Olgu Pep Guardiola

High Performance Computing (HPC) Group - University of Bristol 3

Six Degrees of Separation
All people are 6 or less connections away from each other!

High Performance Computing (HPC) Group - University of Bristol

Problem
Can we scale this up to real-life networks ?

4

High Performance Computing (HPC) Group - University of Bristol

Agenda

5

2 Introduction to BFS

3 memoryBFS

4 streamingBFS

5 Performance Evaluation

6 Summary & Conclusion

1 Introduction to FPGAs

High Performance Computing (HPC) Group - University of Bristol

Introduction to FPGAs
● FPGA – Field Programmable Gate Arrays
● Two major players in the FPGA domain – AMD (prev. Xilinx) and Altera (part of Intel)
● Used to code with HDL (Hardware Description Languages) – (e.g. VHDL,Verilog)
● Offers:

○ massive parallelism – for each application, operations are customized and fixed to one location on the
FPGA, then data flows through them

○ flexibility of reprogramming – it is possible to modify the architecture of the design according to the
needs (e.g. adding more compute units, upgrading the design)

● Our aim is to explore with Intel oneAPI/SYCL to :
○ Achieve better performance – will be discussed in detail
○ Increase reproducibility and productivity

6

High Performance Computing (HPC) Group - University of Bristol 7

Introduction to Breadth First Search Algorithm

https://docs.google.com/file/d/1aRF7CotWSih_KoaJ1Fy1ZNyn3dBg-P6k/preview

High Performance Computing (HPC) Group - University of Bristol

Introduction to Breadth First Search Algorithm
● Why we need BFS?

○ Essential for solving various real-world problems
○ Examples : Route planning in GPS navigation systems, social media, P2P networks.
○ Performance Bottlenecks:

■ Depends on irregular memory accesses rather than computation intensity!
■ Huge dataset sizes (trillions of edges)
■ Next to visit node is decided during the execution
■ Overall for BFS – Computing is cheap, but moving data is expensive!

8

High Performance Computing (HPC) Group - University of Bristol

Overview of execution with memoryBFS and streamingBFS

9

● Conceptual explanation from the video still holds!

High Performance Computing (HPC) Group - University of Bristol

Our Approaches - memoryBFS

10

Highlights:
● Uses off-chip DDR memory to share data between kernels (USM programming model)
● Leverages automatic cache memory to mitigate random memory accesses
● Coarse Grained Parallelism
● Coalesced Writeback Support
● Designed following the Intel oneAPI guidance

High Performance Computing (HPC) Group - University of Bristol

memoryBFS
● 4 kernels:

○ parallel explorer: perform dot product operation (works on same shared buffers)
○ parallel levelgen: update the level vector (works on same shared buffers)
○ pipegen: generate the list of newly visited nodes
○ mask remove: prepare the binary vectors for the next stage

● Load balancing is important!

11

High Performance Computing (HPC) Group - University of Bristol

Overview of Organisation
● Main Memory :

○ Stores graph data read from binary files
in CSR format

● CPU :
○ Initializing the timer
○ Loading graphs from main memory
○ Assign graph partitions to each compute unit
○ Bridge between main memory and FPGA

● FPGA :
○ Calculations and data requests
○ Where all the magic happens

12

● Python Helper Script
○ Converts .txt graph datasets to .bin format.

■ .bin files reduces the storage space ~10x
○ Partitions the graph into smaller subgraphs based

on user-specified compute units.
○ Partitioning options:

■ Horizontal split based on the number of
non-zeros (edge split).

■ Split by the number of rows (node split)
within the adjacency matrix.

CSR format
● The Compressed Sparse Row/Column
● Stores the graph data in 2 vectors
● Index pointers indicates the nth position at the indices, difference between (n+1) and (n) th elements is the total number

of neighbours
● Indices show the neighboring elements

High Performance Computing (HPC) Group - University of Bristol

Edge Split vs Node Split, which one is better ?
● It varies!
● Table on Right, Showcases disparities

in partitions, with node or edge counts
differing by over 2x.

● Choosing row vs. edge split depends on
whether node processing or edge processing
drives execution time.

● For our data and design,
edge split proves to be better

● Edge Split Example :

13

High Performance Computing (HPC) Group - University of Bristol

Automatic Caching in memoryBFS
● Automatic Cache (1MB) - Experimented other sizes too this is sweet spot!

○ using CacheLSU = ext::intel::lsu<ext::intel::burst_coalesce<true>,
ext::intel::cache<1024*1024>,ext::intel::statically_coalesce<false>>;

14

High Performance Computing (HPC) Group - University of Bristol

Coarse Grained Parallelism in memoryBFS
● LevelGen - 2 Kernels writing to same USM but different portions

15

LevelGenerator L LevelGenerator H

0 … N/2 … N

usm_dist :

LevelGenerator L LevelGenerator H

0 … N/2 … N

usm_visited :

High Performance Computing (HPC) Group - University of Bristol

Coalesced Writeback in memoryBFS
● Writeback stage processes data from nodes, filters and stores specific elements in a temporary buffer temp,

and then transfers these elements to an output buffer usm_pipe in chunks to optimize memory access and
processing efficiency.

● II becomes 1 and the performance is higher compared to writing back to memory in each iteration

Key Concepts:

● Buffering: Temporarily stores data to manage and optimize data flow, especially in hardware where I/O
operations may be costly or need to be minimized.

● Data Streaming: Processed data is moved out in chunks, enabling efficient use of resources and ensuring
continuous data processing and output.

16

High Performance Computing (HPC) Group - University of Bristol

Our Approaches - streamingBFS

17

memoryBFS Key Limitations:
● Scalability issues (limited with 4CU)
● Global memory access bandwidth issues, this was the main target to improve
● Performance results will be discussed later

streamingBFS - Complete Revamp to memoryBFS:
● Dataflow Execution Model - Uses pipes to stream data between kernels
● New Kernel Designs with Additions - Ensures synchronisation with minimal latency
● Compression of Data to Bytes and Bit Manipulations
● Replaces Some Off-chip Memory Accesses with On-chip Data Movement
● Modular design – modifying # CUs, FIFO and cache sizes from CMake variables

memoryBFS Recap
○ Uses Unified Shared Memory (USM) to share data between kernels
○ Leverages automatic cache memory to mitigate random memory accesses
○ Coarse Grained Parallelism
○ Coalesced Writeback Support
○ Designed following the Intel oneAPI guidance

High Performance Computing (HPC) Group - University of Bristol

Dataflow Execution Model in streamingBFS

18

● Dataflow execution model
employs pipes for efficient data
exchange between kernels

● The synchronisation of kernels is
achieved via pipes so q.wait()
commands are no longer
required

● Improves performance drastically streamingBFS

memoryBFS

High Performance Computing (HPC) Group - University of Bristol

Splitting Large Kernels in streamingBFS

19

The explorer kernel is split
into 3 FIFO kernels:
● Explore Read
● Explore Filter
● Explore Write

streamingBFS

memoryBFS

High Performance Computing (HPC) Group - University of Bristol

Increased Paralllelism in streamingBFS

20

Instead of 2 Level Generators,
we now have N Level generators
(N : number of compute units)

streamingBFS

memoryBFS

High Performance Computing (HPC) Group - University of Bristol

Bit Manipulations in streamingBFS
● Traditional BFS implementations (+ memoryBFS) use a boolean array to keep track of visited nodes.
● streamingBFS utilises byte storage with bit manipulations
● This method allowed us to reduce the bottlenecks associated with data transfers
● Increased locality when combined with On Chip Memory
● Example: Node 10 Visit Update

○ Bit Index: (10 / 8 = 1)
○ Bit Position: (10 % 8 = 2)

21

High Performance Computing (HPC) Group - University of Bristol 22

Pipe Working Mechanism in streamingBFS

1. Iterate over number of nodes with tile size NUM_BITS_VISITED

2. In each chunk, initialize StreamingData class to hold data and valid flag.

3. Populate StreamingData class with valid data and padding with non valid data and marking

padding data as not valid.

4. After processing the chunk, write the data to an output pipe for further processing.

5. Finally, write back terminating bits to signal to the next kernel that the current processing is

complete.

High Performance Computing (HPC) Group - University of Bristol

Improvements with streamingBFS
● Sort-Filter Kernel: Modified version of shift register, where we insert new data into the next

empty space

23

High Performance Computing (HPC) Group - University of Bristol

Improvements with streamingBFS
● On Chip Memory with Cache

○ Helps us to reduce the write back to memory II to be 1
○ Increases locality
○ Same implementation from oneAPI samples repository

● Execution Steps:
○ Read the pipe
○ Check if the data is valid (not done signal)
○ Read the value from OnChip Memory (It stores 4 last read data in cache so relatively

quick access)
○ Toggle the required bits to 1
○ Write back to memory

24

High Performance Computing (HPC) Group - University of Bristol

Summary of streamingBFS

25

streamingBFS:
● Highlights:

○ Dataflow Execution Model - Uses pipes to stream data between kernels
○ New Kernel Designs with Additions - Ensures synchronisation with minimal latency
○ Compression of Data to Bytes and Bit Manipulations
○ Replaces Some Off-chip Memory Accesses with On-chip Data Movement
○ Modular design – modifying # CUs, FIFO and cache sizes from CMake variables

● Key Limitations:
○ Sort-Filter Kernel II=2
○ During the routing and timing of the design, larger designs have a frequency hit

● The synthesis & performance comparisons shows better insights about memoryBFS and streamingBFS

Synthesis Results for memoryBFS
● Compiler: Intel oneAPI 23.2.0, Target: Intel Stratix 10 GX 2800 FPGA on a Bittware 520N card.

Synthesis backend: Quartus 20.4.0,

26

● Only a small fraction of available resources are
used

● Generated load caches are not included in these
numbers

● There is a slight decrease in clock frequency with
more CUs, but the main limitation is that
competition on memory bandwidth limits further
performance scaling.

Synthesis Results for streamingBFS
● Compiler: Intel oneAPI 23.2.0, Target: Intel Stratix 10 GX 2800 FPGA on a Bittware 520N card.

Synthesis backend: Quartus 20.4.0,

27

● As the caches are now instantiated as part of the kernels,
they show up as part of the resource utilization.

● For smaller cache sizes, routing and timing limit the
number of CUs to 6. The overall lower clock frequencies
are also a symptom of this.

High Performance Computing (HPC) Group - University of Bristol

Performance Variation against # of CU

28

● streamingBFS removes the bandwidth limitations occurred in memoryBFS!

High Performance Computing (HPC) Group - University of Bristol

Performance Evaluation

29

High Performance Computing (HPC) Group - University of Bristol

Performance Evaluation

30

High Performance Computing (HPC) Group - University of Bristol

Performance Evaluation

31

High Performance Computing (HPC) Group - University of Bristol

Attempted Optimisations Summary

32

Optimisation Summary Outcome

Split pointers for USM Define several pointers to different parts of data ⬆
Datatype Use datatypes according to the needs ⬆
Read-Only Cache Boost read only performances ⬆
Parallel For, NDRange Kernels Improve the performance of parallel kernels ⬇
Automatic Cache Increase the locality of data ⬆
Bit Manipulations Compressing information we have ⬆

High Performance Computing (HPC) Group - University of Bristol

Summary for Today

33

● 1021 MTEPS peak performance with 6 compute units for streamingBFS

● streamingBFS provides lots of insights what works best for FPGAs

● Compression of data helps to improve performance drastically

● Pipes for efficient communication between kernels

● Edge/Node split performance depends on dataset/implementation

● If you are interested in FPGAs you could apply for an account
at Paderborn Noctua2 system to experiment CODE

Paper:

PAPER

Thank you!

