
Towards Efficient OpenCL Pipe Specification for Hardware
Accelerators

Topi Leppänen, Tampere University, Finland

Joonas Multanen, Leevi Leppänen, Pekka Jääskeläinen
Tampere University Tampere University Tampere University & Intel

| 2

Outline

● Background on OpenCL implementations for FPGA
● Issues with the pipe specification in regards to streaming-style

execution
● Suggestions to improve the specification

● A case study on a more dynamic hardware pipe implementation

Intel FPGA SDK
for OpenCLAMD VitisPoCL

Intel
FPGAs

AMD
FPGAs

FPGA Implementations

Intel
FPGAs

AMD
FPGAs

some Discontinued in 2022

Intel FPGA SDK
for OpenCLAMD VitisPoCL

Intel
FPGAs

AMD
FPGAs

FPGA Implementations

Intel
FPGAs

AMD
FPGAs

some Discontinued in 2022

| 3

Outline

● Background on OpenCL implementations for FPGA
● Issues with the pipe specification in regards to streaming-style

execution
● Suggestions to improve the specification

● A case study on a more dynamic hardware pipe implementation

Intel FPGA SDK
for OpenCLAMD VitisPoCL

Intel
FPGAs

AMD
FPGAs

FPGA Implementations

Intel
FPGAs

AMD
FPGAs

some Discontinued in 2022

| 4

Generic OpenCL Platform

OpenCL DeviceOpenCL Host

| 5

FPGA as OpenCL Device

Static Region

Reconfigurable region

Kernel A

Bus
Controller

Memory
Controller

Kernel B

Kernel
C

Memory Interconnect

DDR/
HBM

FPGA Card

PCIe

Host CPU
FPGA
chip

| 6

FPGA as OpenCL Device

● Kernels are pre-compiled with FPGA vendor
tooling
● Circuit descriptions need to be

synthesized, placed and routed
● The compile-time measured in hours

● The reconfigurable region in the FPGA is
programmed with
clCreateProgramWithBinary

Static Region

Reconfigurable region

Kernel A

Bus
Controller

Memory
Controller

Kernel B

Kernel
C

Memory Interconnect

DDR/
HBM

FPGA Card

PCIe

Host CPU
FPGA
chip

| 7

OpenCL Task Pipeline on FPGA

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

| 8

OpenCL Task Pipeline on FPGA

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

4K image (~8MB) 4K image (~8MB) 4K image (~8MB)

| 9

OpenCL Task Pipeline

Time

Producer

Consumer

Event

Buffer

The specification:
“A command submitted to a device will not
launch until prerequisites that constrain the
order of commands have been resolved.
…
The command will wait and not launch until all the
events in the list are in the state CL_COMPLETE
...”

Streaming-style execution in OpenCL

| 11

Streaming execution

● Task pipelines with a finer grain of synchronization than events
● E.g. partial frame is already sent for the next kernel, while the entire

frame is not yet processed
● Minimizes single-frame latency
● Minimizes intermediate storage requirement

● Forever-running kernels that do not need to be regularly launched
● E.g. microphone generates continuous data, no need to launch the

processing kernels every n seconds

read_pipe

write_pipe

Time

Producer

Consumer

Pipe

| 12

OpenCL Pipe Specification

● OpenCL memory object just like Buffer or Image
● Can be set as kernel arguments

● FIFO-like
● Kernels use read_pipe and write_pipe to push and pop packets

● Reserve multiple of packets at work-item or work-group level
● Not accessible to host
● Introduced in OpenCL 2.0

● Made optional in OpenCL 3.0

Producer ConsumerPipe

clSetKernelArg

clCreateKernel
clCreatePipe

| 13

OpenCL Pipe Memory Model

Producer ConsumerPipe

clSetKernelArg

clCreateKernel
clCreatePipe

read_pipe

write_pipe

Time

Producer

Consumer

Pipe

| 14

OpenCL Pipe Memory Model

__kernel void
producer(__write_only pipe int out_pipe,
 __global int* A)
{
 for (int i = 0; i < N; i++)
 {
 while(write_pipe(out_pipe, &A[i]));
 }
}

__kernel void
consumer(__read_only pipe int in_pipe)
{
 int data = 0;
 while(read_pipe(out_pipe, &data));
 // ...compute…
}

Producer ConsumerPipe

clSetKernelArg

clCreateKernel
clCreatePipe

read_pipe

write_pipe

Time

Producer

Consumer

Pipe

read_pipe

write_pipe

Time

Producer

Consumer

Pipe

| 15

The target

Should we include an event dependency
between the kernels when submitting?

__kernel void
producer(__write_only pipe int out_pipe,
 __global int* A)
{
 for (int i = 0; i < N; i++)
 {
 while(write_pipe(out_pipe, &A[i]));
 }
}

__kernel void
consumer(__read_only pipe int in_pipe)
{
 int data = 0;
 while(read_pipe(out_pipe, &data));
 // ...compute…
}

read_pipe

write_pipe

Time

Producer

Consumer

Pipe

| 16

No good solutions
With the event dependency: Without the event dependency:

Time

 Consumer

Time

Producer

Consumer

Pipe Pipe

The target

Time

 Consumer

Time

Producer

Consumer

Pipe Pipe

Pipe contents are only
guaranteed at synchronization

points

| 17

No good solutions

With the event dependency:

● The specification:
“A command submitted to a device will not
launch until prerequisites that constrain the
order of commands have been resolved.

…
The command will wait and not launch until all the
events in the list are in the state CL_COMPLETE
...”

Without the event dependency:

Time

 Consumer

Time

Producer

Consumer

Pipe Pipe

Pipe contents are only
guaranteed at synchronization

points

| 18

No good solutions

With the event dependency:

● The specification:
“A command submitted to a device will not
launch until prerequisites that constrain the
order of commands have been resolved.

…
The command will wait and not launch until all the
events in the list are in the state CL_COMPLETE
...”

Without the event dependency:

● Increases latency
● Pipe has to be large

enough to hold all
the data

Time

 Consumer

Time

Producer

Consumer

Pipe Pipe

Pipe contents are only
guaranteed at synchronization

points

| 19

No good solutions

With the event dependency:

● The specification:
“A command submitted to a device will not
launch until prerequisites that constrain the
order of commands have been resolved.

…
The command will wait and not launch until all the
events in the list are in the state CL_COMPLETE
...”

Without the event dependency:

● The specification:
“The pipe state i.e. contents of the pipe across kernel-
instances (on the same or different devices) is
enforced at a synchronization point.”

● No guarantee that both of these kernels will make
concurrent progress

Time

 Consumer

Time

Producer

Consumer

Pipe Pipe

Pipe contents are only
guaranteed at synchronization

points

| 20

No good solutions

With the event dependency:

● The specification:
“A command submitted to a device will not
launch until prerequisites that constrain the
order of commands have been resolved.

…
The command will wait and not launch until all the
events in the list are in the state CL_COMPLETE
...”

Without the event dependency:

● The specification:
“The pipe state i.e. contents of the pipe across kernel-
instances (on the same or different devices) is
enforced at a synchronization point.”

● No guarantee that both of these kernels will make
concurrent progress

● Good chance for a
deadlock

| 21

OpenCL Pipe Memory Model

Proposal #1 for improving the OpenCL pipe specification

Declare in the memory consistency model that pipe read and
write operations are eventually visible from the producer to the
consumer end of the pipe, without requiring to wait for the
whole buffer synchronization points.

● SYCL pipe extension proposal discusses these issues more
● Similar change needed for OpenCL

| 22

OpenCL Pipe Memory Model

Proposal #1 for improving the OpenCL pipe specification

Declare in the memory consistency model that pipe read and
write operations are eventually visible from the producer to the
consumer end of the pipe, without requiring to wait for the
whole buffer synchronization points.

● All the data that the kernel needs no longer needs to be ready in global
memory when the kernel is launched

→ implementation must support multiple kernel instances RUNNING at
 the same time

● Possible to construct pipe graphs of any size at run-time
→ arbitrarily many concurrent running kernels

| 23

Pipes Between Built-in Kernels

sobel3x3

sobel3x3

pipe

pipe

pipe

● There is no limit to how many built-in kernel instances could be chained
together

● The number of concurrent RUNNING kernels can grow arbitrarily large
→large number of HW contexts

| 24

Pipes Between Built-in Kernels

sobel3x3

sobel3x3

pipe

pipe

pipe

Proposal #2 for improving the OpenCL pipe specification

Add a device query CL_DEVICE_BUILT_IN_KERNELS_RESOURCES
parameter to clGetDeviceInfo which would return a list of a number of
concurrent hardware contexts for each built-in kernel.

| 25

Proposal #3 for improving the OpenCL pipe specification

Add a device query CL_DEVICE_MAX_CONCURRENT_PIPE_KERNEL
_INSTANCES and allow clEnqueueNDRangeKernel to fail if more than that
many concurrent instances are enqueued.

Software Kernel Pipes with Limited HW Contexts

● Propose a new device query parameter
CL_DEVICE_MAX_CONCURRENT_PIPE_KERNEL_INSTANCES to limit
the total number of concurrent HW contexts (the size of pipe graph).
● Implementation can set to 1 if they want to keep the old behavior as

defined in the current OpenCL specification
● Producer-consumer kernels connected with event do not count

towards this limit
● Old programs with the event synchronization would still work as before
● User can use events to split large graphs into multiple smaller ones

Dynamic Pipe Component

| 27

OpenCL Pipe on FPGAs

● Kernels connected together with streaming
interfaces

● Ready-valid-signaling
● FPGA vendor OpenCL implementations only

support “static pipe”
● Pipe connectivity, depth and width need to

be defined at compile-time
● Not spec-compliant

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

| 28

Static Pipe Connectivity

● Kernels connected together with streaming
interfaces

● Ready-valid-signaling
● FPGA vendor OpenCL implementations only

support “static pipe”
● Pipe connectivity, depth and width need to

be defined at compile-time
● Not spec-compliant

● Two options:
1) Standardize the static pipe
2) More dynamic pipe implementation

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

| 29

Runtime-defined Pipe Connectivity

● Kernels are connected together with pipes using clSetKernelArg
● Connectivity defined at runtime
● After the program has been built

● clCreatePipe calls are also independent of the program object
● Runtime-defined pipe depth and width

● How to make this work on FPGA?

Producer ConsumerPipe

clSetKernelArg

clCreateKernel
clCreatePipe

| 30

Runtime-defined Pipe Connectivity

● Kernels are connected together with pipes using clSetKernelArg
● Connectivity defined at runtime
● After the program has been built

● clCreatePipe calls are also independent of the program object
● Runtime-defined pipe depth and width

● How to make this work on FPGA?

Kernel 2

Kernel 0

Kernel 1
 AXI
 Stream
Crossbar

AXI
Stream

Crossbar

FIFO
FIFO

FIFO

FIFO

| 31

Runtime-defined Pipe Connectivity

Kernel 2

Kernel 0

Kernel 1
 AXI
 Stream
Crossbar

AXI
Stream

Crossbar

FIFO
FIFO

FIFO

FIFO

Dynamic pipe parameter Solution

Depth Fail any clCreatePipe-call that is larger
then HW FIFO size

Width Manage interfacing to the fixed width AXI
Stream from the kernel-side

Connectivity AXI Stream TDEST-based routing of
packets

| 32

Dynamic Kernel Pipeline

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3 ● Hardware accelerators exposed to OpenCL host
as built-in kernels

| 33

Dynamic Kernel Pipeline

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3 ● Computation graph can now be constructed at run-time
● Processing pipeline can be changed based on e.g. environmental conditions

or user input
● E.g. add pre-processing kernels dynamically

| 34

Dynamic Kernel Pipeline

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

● In this example, CL_DEVICE_BUILT_IN_KERNELS_RESOURCES for
● Broadcast-kernel is 2
● Every other kernel has 1

| 35

Evaluation

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

| 36

Evaluation

Sobel3x3

buffer

broadcast

 Sobel3x3
buffer

buffer

DMA

Global Memory

OpenCL host software point-of-view Hardware implementation

Phase

Magnitude

 Non-
 maximum
suppression

DMA

Global Memory

canny

buffer

buffer
Broad-

cast

Broad-
cast

Sobel3x3

Phase

Magnitude

Non-
maximum

suppression

sobel3x3 phase magnitude nonmax

broadcastpipe2buffer
buffer

buffer2pipe

MM2S

AXI
Stream

Crossbar

AXI
Stream

Crossbar

FIFO

Static AXI Stream
connectivity between

kernels

Dynamic AXI
Stream connectivity

Broadcast

buffer

Since the connectivity is static,
there's not much for the programmer to control.

The closest OpenCL compliant way to describe this
hardware system is to call it a one big kernel

Separate kernels with
independent global

memory access

pipe

pipe

pipe

pipe

S2MMDMA DMA

DMA

 PhaseDMA MagnitudeDMA
Non-

 maximum
 suppression

DMA
Configuration #1

sobel3x3 phase magnitude nonmax

Broadcast

FIFO

Global Memory

x2

Configuration #2

Configuration #3

Table 1: Latency and area results for
(partial) Canny edge detection of a
4K image on Alveo U280 FPGA.

Latency LUT

9.9 ms
(100 FPS)

135150
(10.4%)

2.5 ms
(400 FPS)

127549
(9.78%)

3.9 ms
(260 FPS)

185069
(14.2%)

| 37

Spatial Pipelines with Compiled Kernels

FPGA

Partially
Reconfigurable

Region

Partially
Reconfigurable

Region

Partially
Reconfigurable

Region

Partially
Reconfigurable

Region

 AXI
 Stream
Crossbar

AXI
Stream

Crossbar

FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO

System-on-Chip

ASIP

ASIP

ASIP

ASIP

 AXI
 Stream
Crossbar

AXI
Stream

Crossbar

FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO

FU FU

FU FU

FU FU

FU FU

CL_DEVICE_MAX_CONCURRENT_PIPE_KERNEL_INSTANCES = 4

| 38

Conclusion

● The current OpenCL pipe specification is not well-suited for parallel, spatial pipelines
● Fixing the pipe specification could enable novel, spatial architectures programmable

via OpenCL

Kernel 2

Kernel 0

Kernel 1
 AXI
 Stream
Crossbar

AXI
Stream

Crossbar

FIFO
FIFO

FIFO

FIFO

A dynamic pipe component to implement the runtime-defined
pipe connectivity

github.com/cpc/AFOCL

Towards Efficient OpenCL Pipe Specification
for Hardware Accelerators

Topi Leppänen, Joonas Multanen, Leevi Leppänen, Pekka Jääskeläinen

Tampere University

topi.leppanen@tuni.fi

mailto:kati.tervo@tuni.fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

