
Preparing HACC for Exascale Cosmology on Aurora 
using SYCL

Esteban Rangel, Argonne National Laboratory
S. John Pennycook2, Adrian Pope1, Zhiqiang Ma2, Nicholas Frontiere1, Varsha Madananth2

Argonne National Laboratory1, Intel2 



Outline

1. Porting HACC to SYCL
1. Migration Pipeline using SYCLomatic + LibTooling
2. Abstracting Host-side Code
3. Portability comparison with HIP, CUDA, and SYCL on AMD, NVDIA, and 

Intel GPUs 

2. Optimizations for Intel® Data Center GPU Max 1550
3. Preliminary Results from Aurora
4. Preview of Ongoing eDSL Effort

2



CRK-HACC: N-body Cosmological Simulation
3

Hardware/Hybrid Accelerated 
Cosmology Code
• New Conservative Reproducing 

Kernel (CRK) formulation of 
Smoothed Particle Hydrodynamics 
(SPH)

• Resolves some discrepancies with 
grid-based hydrodynamic schemes

• sub-grid models for radiative 
cooling, star formation, and 
feedback from supernovae and 
Active Galactic Nuclei (AGN)



Porting HACC to SYCL

Kernel Test 
Harness

CRK-HACC

Replace DPCT 
namespace with 
standard SYCL, 

convenience 
functions source 

replacement, Convert 
device functions to 

functors 

Programming Model API Wrappers

CUDA Kernels SYCL Kernels

HIP Macros

Migration Pipeline

Abstract host-side 
device API calls to 

CUDA, HIP, and 
SYCL 

4

Rapid 
Prototyping and 

Analysis

CUDA 
Source

SYCLomatic

Clang Functor 
Tool

SYCL 
Source

HIP CUDA SYCL



Kernel Launch Forms

CUDA/HIP 
// CUDA kernel defined as a 
function invoked by <<<>>> 
__global__ void
cuda_kernel(float* a, int b) { 

/* kernel body */ 
}
...
cuda_kernel <<<...>>>(a, b); 

5

SYCL lambda 
// SYCL kernel defined as a 
function invoked by a kernel 
lambda 
void sycl_kernel(float* a, int
b, sycl::nd_item<3> it) { 

/* kernel body */ 
}
...
q.parallel_for(sycl::nd_range
<3>(...),[=](sycl::nd_item <3> 
it) { 

sycl_kernel(a, b, item_ct1); 
});

SYCL function object
// SYCL kernel defined as a 
function object invoked 
directly 
struct SYCLKernel { 
void
operator()(sycl::nd_item<3> it) 
{ 

/* kernel body */ 
}
const float* a; 
const int b; 
}; 
...
q.parallel_for(sycl::nd_range
<3>(...), SYCLKernel(a, b));

The SYCL 2020 standard does not allow function pointers, however, a C++ class from 
a function object can be used as a template parameter and is how our kernel launch 
wrapper is defined. For CUDA, our wrapper is implemented as a macro.  



Experimental Setup

Hardware Configuration for Systems

System CPU GPU FP32 
(theoretical) 
Peak per GPU 

Aurora 2 x Intel® Xeon® 
CPU Max 
9470C, 52 
cores 

6 x Intel® Data 
Center GPU 
Max 1550

45.9 TFLOPS 

Polaris 1 x AMD EPYC 
7543P, 32 
cores

4x NVIDIA 
A100-SXM4-
40GB

19.5 TFLOPS 

Frontier 1 x AMD EPYC 
7A53, 64 cores 

4 x AMD 
Instinct MI250X 

53 TFLOPS 

Simulation
• 2x 5123 particles 
• 5 timesteps (4 fixed sub-cycles)
• 8 MPI ranks

System Configurations (1-node)
• Aurora: 1 rank/stack 
• Polaris: 2 ranks/GPU  

note: measured ∼11% lower efficiency 

• Frontier: 1 rank/GCD
Run Dates:
Aurora: September 15, 2023 : SYCL Compiler: Intel® oneAPI DPC++/C++ Compiler 2023.2.0 (2023.x.0.20230510)
Polaris: August 3, 2023 : CUDA Compiler: cuda_11.8.r11.8/compiler.31833905_0 
Frontier: September 25, 2023 : HIP Compiler: roc-5.3.0 22362 3cf23f77f8208174a2ee7c616f4be23674d7b081

6



Initial Comparison Results 

Aggregate of all GPU Kernels

Frontier Polaris Aurora
0

100

200

300

400

500

E
xe

cu
ti
on

T
im

e
(s

)

CUDA (Default)

CUDA (Fast Math)

HIP (Default)

HIP (Fast Math)

SYCL (Default)

SYCL (Optimized)

• The fast-math compiler option was not enabled 
by default with nvcc or hipcc but is with the 
DPC++ compiler. 

• On Frontier, the HIP code uses wavefront size 64 
and the SYCL code uses sub-group size 64. 

• On Polaris, the CUDA code uses warp size 32 
and the SYCL code uses sub-group size 32. 

• On Aurora, the SYCL code uses sub-group size 
32 or 16, whichever is optimal for the 
implementation. 

Performance results are based on testing as of dates shown in configurations and may 
not reflect all publicly available updates. See slide 6 for configuration details.

7

*Lower is better



Optimizations

Hotspot Kernels
1. Geometry: measures the volumes of gas 

particles 
2. Corrections: computes the reproducing kernel 

coefficients of the higher order smoothed 
particle hydrodynamics (SPH) solver

3. Extras: evaluates the density and state 
gradients

4. Acceleration: calculates the momentum 
derivative

5. Energy: solves the derivative of the internal 
energy. 

The SIMD lane data layout of the “half-warp” algorithm, 
implemented in the hotspot kernels. 

8

Lanes [0-15] load and update particles from leaf A, while lanes 
[16-31] operate on particles from leaf B. 



Optimizing Communication

• Notice the pair-wise symmetry, which is 
critically important for the correctness of the 
algorithm. 

• XOR-based shuffle pattern implemented as:
• __shfl intrinsic with CUDA 
• sycl::select_from_group with 

SYCL

9

The communication pattern of the “half-warp” algorithm for interacting particles from leaves A and B 
within the same warp/sub-group. 

The figure represents one of the total (|𝐿𝑒𝑎𝑓𝐴| × |𝐿𝑒𝑎𝑓𝐵|/𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒) 
instances required. 



Optimizing Communication

Intel® Data Center GPU Max 1550 assembly snippets 
for sycl::select-from-group
Elements are gathered from the registers specified in a0 and written into r2 
using indirect register access 
...
shl (16|M0)  r24.0<1>:uw  r82.0<2;1,0>:uw  0x2:uw   
add (16|M0)  a0.0<1>:uw   r24.0<1;1,0>:uw  0x640:uw 
mov (16|M0)  r2.0<1>:ud   r[a0.0]<1,0>:ud
...

alternative instruction sequence employing register regioning is more 
performant but not always achievable by the compiler
...
add (16|M0)  r24.0<1>:f  r68.0<1;1,0>:f  -
r14.0<0;1,0>:f 
add (16|M0)  r26.0<1>:f  r68.0<1;1,0>:f  -
r14.1<0;1,0>:f
add (16|M0)  r30.0<1>:f  r68.0<1;1,0>:f  -
r14.2<0;1,0>:f
...

Communication Strategies explored 

• Broadcasts
• Restructure loops so that sufficient 

information is known about the 
communication pattern at compile-time to 
generate more efficient assembly. 

• Shared Local Memory
• Uses sycl::local_accessor to reserve a 

small amount of work-group local memory 
per sub-group to communicate instead of 
via registers. 

• Optimized Instruction Sequences using vISA1

• Explicitly code the assembly instructions 
for each communication step needed. 

10

1 Rangel et al., A Performance-Portable SYCL Implementation of CRK-HACC for Exascale 



Optimization Results

Aurora

upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
li
ca

ti
on

E
±

ci
en

cy

Broadcast

Memory, 32-bit

Memory, Object

Select

vISA

• Broadcast uses a sub-group size of 16, all 
other variants use a sub-group size of 32.

• Restructuring the loops to use broadcasts 
requires fewer atomic instructions, more 
noticeable in the Extras and Corrections 
kernels.

• Performance evaluation on NVIDIA  and 
AMD architectures was also performed1. 

11

Performance results are based on testing as of dates shown in configurations and may 
not reflect all publicly available updates. See slide 6 for configuration details. 1 Rangel et al., A Performance-Portable SYCL Implementation of CRK-HACC for Exascale 

*Higher is better



Weak Scaling on Aurora

12

Disclaimer: Results were gathered on a pre-production 
state of Aurora with engineering versions of the SDK 
and system software. The two studies have different 
software versions and application configurations and 
are only intended to display a trend. 

Figure-of-merit (FOM)
steps * sub-steps * number-of-particles / GPU time / 106

6

12

24

48

96

192

384

768

1536

3072

6144

12288

6 12 24 48 96 192 384 768 1536 3072 6144 12288

Re
la

tiv
e 

FO
M

Number of GPUs

Weak Scaling: GPUs

Study 1 Study 2



Weak Scaling on Aurora

13

Disclaimer: Results were gathered on a pre-production 
state of Aurora with engineering versions of the SDK 
and system software. The two studies have different 
software versions and application configurations and 
are only intended to display a trend. 

Figure-of-merit (FOM)
steps * sub-steps * number-of-particles / total wall time / 106

1

2

4

8

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 64 128 256 512 1024 2048

Re
la

tiv
e 

FO
M

Number of Nodes

Weak Scaling: Aurora Nodes

Study 1 Study 2



eDSL for Parallel Programming Model APIs
CRK-HACC is under active development, and
since November 2023, the repository has had 
377 files changed, 92,862 insertions(+), and 
3,410 deletions(-) in 77 commits.
Goal: Design an embedded domain-specific 
language (eDSL) using C++ for HACC’s 
supported programming models to have a 
single-source representation of kernels and 
host-side code. 

1. Define the host-side abstractions, e.g., 
memory management, kernel 
invocation, data transfer, etc.

2. Define the kernel functionality 
abstractions, e.g., warp/sub-group 
functions, group functions, special 
math functions, etc.

3. Design the syntax for the eDSL.
4. Write the C++ wrappers that interface 

with the CUDA and SYCL APIs. 

14

CRK-HACC

Host-side API Wrappers

CUDA Kernels SYCL Kernels

HIP Macros

HIP CUDA SYCL

CRK-HACC

eDSL Backends

eDSL kernels

HIP CUDA SYCL

eDSL host-side code active development

mostly static,
architecture optimized



HACC eDSL Kernel Launcher 
template<typename K>
INLINE_FUNCTION_ATTR void kernel_launch(K 
kernel, kernel_launch_params params)
{
#ifdef __NVCC__
cudaStream_t stream = params.dispatcher;
cuda_kernel_launch<<<params.num_blocks, 
params.block_size, params.local_memory_bytes, 
stream>>>(kernel);
cudaStreamSynchronize(stream);
#endif
#ifdef SYCL_LANGUAGE_VERSION
...
}

#ifdef __NVCC__
template<typename K>
__global__ void cuda_kernel_launch(K kernel)
{
hacc::item<1> it = hacc::item<1>();
kernel(it);
#endif
}

15

// example kernel invocation (host-side)
hacc::kernel_launch(\

updatePositions{m_devPosBuff[buff_indx], m_devVelBuff[buff_indx], prefactor},
hacc::kernel_launch_params{posBlocksPerGrid, m_groupSize, 0, devManager}

);



HACC eDSL Kernel Example  

16

#include "updatePositions.h"
#include "eDSL_common.h"
#include "eDSL_kernel_launch.h"
#include "eDSL_math.h"
#include "eDSL_utility.h"

template void hacc::kernel_launch<updatePositions>(updatePositions, 
kernel_launch_params);

KERNEL_FUNCTION_ATTR void updatePositions::operator () (hacc::item<1> 
item) const
{
/* kernel body */

}

The use of explicit 
instantiation of the launch 

wrapper in the kernel 
definition source file avoids 

the need to build CUDA 
relocatable device code. 



HACC eDSL Results

• HACC gravity-only simulation
• 512^3 particles
• 8 MPI ranks

• Test Systems
• ANL JLSE, (4x) NVIDIA V100

• Evaluate CUDA and eDSL with 
CUDA back-end

• Sunspot, Intel (4x) Intel® Data 
Center GPU Max 1550
• Evaluate SYCL and eDSL with SYCL 

back-end

17

0

0.2

0.4

0.6

0.8

1

1.2

CUDA eDSL [CUDA BE] SYCL eDSL [SYCL BE]

Re
la

tiv
e 

FO
M

updateVelocities Kernel

Efficiency of eDSL



Conclusion

• Described porting HACC from 
a CUDA codebase to SYCL.
• The “shuffle” operations used 

by CRK-HACC are not 
performance-portable on the 
Intel® Data Center GPU Max 
1550.
• A straightforward workaround 

for shuffles using shared-local 
memory was proposed.

• Scaling on pre-production 
Aurora was demonstrated on 
up to 1792 nodes. 
• Previewed our ongoing eDSL 

effort to support code 
maintainability. 

18



Disclaimers
• Performance varies by use, configuration and other factors. 

Learn more at https://www.intel.com/performanceindex 
• Performance results are based on testing as of dates shown in configurations 

and may not reflect all publicly available updates.  See Slide 6 for 
configuration details. No product or component can be absolutely secure. 
Intel does not control or audit third-party data.  You should consult other 
sources to evaluate accuracy.
• Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of 

Intel Corporation or its subsidiaries. Other names and brands may be 
claimed as the property of others. Khronos is a registered trademark and 
SYCL and SPIR are trademarks of The Khronos Group Inc. 
• No license (express or implied, by estoppel or otherwise) to any intellectual 

property rights is granted by this document, with the sole exception that code 
included in this document is licensed subject to the Zero-Clause BSD open 
source license (OBSD), http://opensource.org/licenses/0BSD. 

19

https://www.intel.com/performanceindex
http://opensource.org/licenses/0BSD


Acknowledgments

• This research was supported by the Exascale Computing Project 
(17-SC-20-SC), a collaborative effort of the U.S. Department of 
Energy Office of Science and the National Nuclear Security 
Administration.
• This research used resources of the Argonne Leadership 

Computing Facility, which is a DOE Office of Science User Facility 
supported under Contract DE-AC02-06CH11357.
• This research used resources of the Oak Ridge Leadership 

Computing Facility at the Oak Ridge National Laboratory, which is 
supported by the Office of Science of the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

20


