
SYCLcon
2021/04/28–29

SYCL for Vitis 2020.2: SYCL & C++20 on Xilinx FPGA
Luc Forget1 Andrew Gozillon2 Gauthier Harnisch1

Ronan Keryell1 Lin-Ya Yu1 Ralph Wittig1

1Xilinx 2University of the West of Scotland

Abstract

SYCL is a single-source C++ DSL targeting a large variety of accelerators in a unified way by using
different back-ends.
We present an experimental SYCL implementation targeting Xilinx Alveo FPGA cards by merging
2 different open-source implementations, Intel’s oneAPI DPC++ with some LLVM passes from
triSYCL.
The FPGA device configuration is generated by Xilinx Vitis 2020.2 fed with LLVM IR SPIR and Xilinx
XRT is used as a host OpenCL API top control the device.

Motivation

I FPGA are hard to program
I HLS (High-Level Synthesis) has made it better
I Tools use lots of non-standard language extensions
I Tools are usually split source

I SYCL for FPGA is trying to make it simpler
I Single-source
I Uses the usual compiling process of C++
I Pure modern C++, can be implemented as a normal library for host only execution
I Standard

Implementation

I Based on Intel’s oneAPI DPC++ because:
I Open-source
I Using OpenCL
I Based on LLVM latest ToT

I We use Xilinx’s OpenCL runtime from XRT
I The compilation flow required changes
I Using Vitis’s v++ as backend compiler
I Needs downgrading from LLVM ToT to LLVM 6.x
I Needs converting SPIR-V builtin to “SPIR-df (de facto)”
I We tweaked the optimization pipeline

1. Device front-end, will only emit device code
2.I Run optimizations
I Convert SPIR-V builtins to “SPIR-df (de facto)”
I Generate configuration for the backend

3.I Link the device code with de device runtime
I Run optimizations
I Downgrade the IR to LLVM 6.x

4. Compile each kernel with the backend
5. Link all kernels
6. Package the device image as data for the host
7. Assemble the packaged device image into a .o
8. Generate the inclusion header
9. Compile the host code

10. Link everything together

Targets

We support 3 emulation targets and 1 for real hardware execution
I Library only
I SYCL runtime is used as normal C++ library and does not use Vitis at all
I Any C++ compiler can be used to compile
I Fastest to compile and execute on CPU
I Kernel code will be executed natively on the host
I Can use runtime checkers like: sanitizers, valgrind... and usual debuggers
I But its the furthest from hardware

I Software emulation
I Needs to use our custom compiler and use Vitis compiler
I Kernel code is run natively on the host with the Vitis software emulator
I Kernel code is isolated from host code

I Hardware emulation
I Needs to use our custom compiler and Vitis RTL synthesis
I Generate reports about expected resource usage and timings
I Kernel code is executed in Vitis RTL simulator
I Kernel code is isolated from host code

I Hardware execution on FPGA
I Generates reports about the real resource usage and timings
I Kernel code is executed on the FPGA
I Slowest to compile including Vitis RTL synthesis and FPGA place & route

FPGA-specific extensions to the SYCL standard

Allow better control on the design and performances
I Pipeline annotations

for (...)
xilinx::pipeline([&] { ... });

The for loop will get each stage pipelined in hardware and this will speedup the loop at the cost of using a
little bit more hardware and latency.

I DDR bank accessor property
sycl::accessor Accessor

{ Buffer, cgh, sycl::ONEAPI::accessor_property_list{sycl::xilinx::ddr_bank<1>}};
The memory accessed by Accessor will be placed in the DDR memory bank 1

I Kernel backend compilation option for each kernel
cgh.single_task(xilinx::kernel_param("--kernel_frequency 300"_cstr, [=] {

...
}));
The backend compiler invocation for this kernel will receive --kernel_frequency 300 forcing the
generation with a kernel clock of 300 MHz

I Partition array
xilinx::partition_array<int, 12, xilinx::partition::complete<1>> arr{ ... };
is similar:
std::array<int, 12> arr{ ... };
but arr will be fully partitioned as registers making access faster by using more resources

I And more...

Using multiple devices in the same single-source application

#include <iostream>
#include <sycl/sycl.hpp>

int main() {
sycl::buffer<int> v { 10 };

// Implement a generic heterogeneous "executor"
auto run = [&] (auto sel, auto work) {

sycl::queue { sel }.submit([&](auto& h) {
auto a = sycl::accessor { v, h };
h.parallel_for(a.get_count(), [=](auto i) { work(i, a); });

});
};
run(sycl::host_selector {}, [](auto i, auto a) { a[i] = i; }); // CPU
run(sycl::accelerator_selector {}, [](auto i, auto a) { a[i] = 2*a[i]; }); // FPGA
run(sycl::gpu_selector {}, [](auto i, auto a) { a[i] = a[i] + 3; }); // GPU

sycl::host_accessor acc { v };
for (int i = 0; i != v.get_count(); ++i)

std::cout << acc[i] << ", ";
std::cout << std::endl;

}
I The above example is running code on a CPU, a Xilinx FPGA and an Nvidia GPU within a single application
I Type-safe generic and functional programming with C++20 without using template or typename keyword
I Compiled with 1 single command: clang++ -std=c++20 -fsycl -fsycl-unnamed-lambda src.cpp

-fsycl-targets=nvptx64-nvidia-cuda-sycldevice,fpga64_hw

Future Work

I Focus more on performance
I Expose more hardware details
I Give more control over HLS to the user
I Better adapt the optimizations to FPGA

I Usability
I Fix more compatibility issues between the SYCL toolchain and Vitis v++
I Improve support of the SYCL standard
I Add support for more Xilinx hardware

I Test the implementation on more and bigger applications


