
IWOCL 21

Accelerating Regular-Expression

Matching on FPGAs with

High-Level Synthesis

Devon Callanan

Luke Kljucaric

Alan George
University of Pittsburgh

NSF SHREC

Outline

2

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

Goals, Motivations, and Challenges

▪ Goals

▪ Accelerate packet inspection for high-speed networking

▪ Investigate performance characteristics of OpenCL

▪ Motivations

▪ Faster link speeds demand faster deep packet inspection

▪ FPGA design tools continue to improve

▪ Challenges

▪ Throughput scaling costs grow exponentially

▪ Tradeoffs between complexity and performance of high-

level synthesis designs

3

Outline

4

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

What is a regex?

▪ Regex describe complex patterns

in compact ways

▪ Queries are built using

metacharacters, grouping

symbols, and regular

characters

▪ Example:

▪ colou?r: Matches both American

“color” and British “colour”

▪ Used in network intrusion

detection, genomics, and natural

language processing

MetaChar Meaning

| Boolean Or

* Zero or More

+ One or More

? Zero or One

What is network intrusion detection?

▪ Network intrusion detection systems (NIDS) watch

network traffic for suspicious packets

▪ Security professionals write rules defining which packets

should set off alerts in the system

▪ Can completely block

some traffic

▪ Each rule can specify a

regex as detection options

▪ SNORT is a common

open-source NIDS with

thousands of rules

What is an NFA?

▪ Non-deterministic finite automata (NFAs) are state machines

▪ Each circle is a state

▪ Each arrow is a transition between states

▪ NFAs can be constructed to reach an accepting state only after

certain input patterns

▪ The input patterns (regular language) described by an NFA can be

described by an equivalent regex!

7

Bears|Beets|Battle*

NFA Example

▪ For each input character, check if an active state

can make a transition

▪ Update states in preparation for next input

8

INPUT TEXT: Beets

What is high-level synthesis?

▪ Traditional FPGA development

describes hardware constructs

▪ Known as Register Transfer Level (RTL)

▪ VHDL and Verilog common examples

▪ High-level synthesis (HLS) abstracts

some fine-grained optimizations to ease

development and allow rapid prototyping

▪ Intel provides access to HLS through

OpenCL and oneAPI

▪ Specifications developed by Khronos Group

▪ oneAPI based on SYCL

9

Putting it all together…

▪ We are creating the accelerators with high-level synthesis

10

Regular-Expression Matching

on FPGAs

with High-Level Synthesis

Accelerating
▪ We want to handle enterprise-level data at enterprise-level speeds

▪ We are using regex from the popular NIDS SNORT

▪ We are transforming these regex into state machines (NFAs)

▪ We are accelerating the state machine computations on FPGAs

Outline

11

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

HLS Kernels - Structure

▪ HLS allows for C-like coding

of accelerators

▪ Representing state machines

requires states and transitions

▪ States are Boolean local

variables (single bit per state)

▪ Transitions are combinational

logic (if/else statements)

▪ Source code is generated

from NFA representation

▪ Often tens of thousands of lines

12

States

Transitions

HLS Kernels – OpenCL

▪ Single work-item kernel

▪ Recommended for FPGA

development

▪ Accelerator fed by burst-

coalesced load-store unit

▪ Load multiple sequential

addresses to hide DDR latency

13

HLS Kernels – Initial performance

▪ Achieves initiation interval (II) of ~1

▪ Infers shift registers for simple repetition

14

OpenCL

Maximum Frequency (Mhz) 293

Throughput (Gbps) 2.3

Look-up Tables (LUTs) 102993

Outline

15

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

Generating NFA – Multi-character NFA

▪ Input bandwidth can be increased by modifying

the NFA to take multiple input characters for each

transition

▪ The transitions in and out of each state are

concatenated together to double input bandwidth

16

Generating NFA – Transition Explosion

▪ Multi-character transformation lead to an explosion

in the number of transitions

17

Outline

18

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

OpenCL Kernels - Testbed

▪ OpenCL on Arria 10

▪ OpenCL SDK version – 19.4

▪ Arria 10 LUTs – 854,400

▪ Arria 10 manufacturing node – 20nm

19

OpenCL Kernels - Performance

▪ Kernel Maximum Frequency

20

OpenCL Kernels - Performance

▪ Kernel Throughput

21

OpenCL Kernels - Performance

▪ LUT usage

22

OpenCL Kernels - Performance

▪ Comparison to Prior Work

23

Outline

24

Goals, Motivations, Challenges

Background

Kernel Approach

Bandwidth Scaling

Results

Conclusions, Future Work

Conclusions

▪ Good throughput scaling for HLS kernels

▪ Unsustainable past 8-character bandwidth

▪ Comparable to similar RTL solutions

▪ Throughput – best in class among similar work

▪ Resources – worst in class among similar work

▪ Throughput Efficiency – near the bottom

25

Future Work

▪ Scale throughput past 20Gbps?

▪ Data pre-filtering

▪ Up to 95% of network traffic can be filtered

▪ Bloom filters allow speedy lookups and compress

memory needs of lookup tables

26

NFA

“Verifier”

Bloom Pre-

Filters

Packet Flows

Acknowledgements

▪ This research was supported by SHREC industry

and agency members and by the IUCRC Program

of the National Science Foundation under Grant

No. CNS-1738783.

▪ We would like to thank the support of Intel who

provided access to hardware and expertise

through the Intel Devcloud and the tremendous

support of Kyle Buettner, Alex Johnson and

Micheal Ing from NSF SHREC.

27

Questions

28

