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Goals, Motivations, and Challenges

▪ Goals

▪ Accelerate packet inspection for high-speed networking

▪ Investigate performance characteristics of OpenCL

▪ Motivations

▪ Faster link speeds demand faster deep packet inspection

▪ FPGA design tools continue to improve

▪ Challenges

▪ Throughput scaling costs grow exponentially

▪ Tradeoffs between complexity and performance of high-

level synthesis designs
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What is a regex?

▪ Regex describe complex patterns 

in compact ways

▪ Queries are built using 

metacharacters, grouping 

symbols, and regular 

characters

▪ Example:

▪ colou?r: Matches both American 

“color” and British “colour”

▪ Used in network intrusion 

detection, genomics, and natural 

language processing

MetaChar Meaning

| Boolean Or

* Zero or More

+ One or More

? Zero or One



What is network intrusion detection?

▪ Network intrusion detection systems (NIDS) watch 

network traffic for suspicious packets

▪ Security professionals write rules defining which packets 

should set off alerts in the system

▪ Can completely block 

some traffic

▪ Each rule can specify a 

regex as detection options

▪ SNORT is a common 

open-source NIDS with 

thousands of rules



What is an NFA?

▪ Non-deterministic finite automata (NFAs) are state machines

▪ Each circle is a state

▪ Each arrow is a transition between states

▪ NFAs can be constructed to reach an accepting state only after 

certain input patterns

▪ The input patterns (regular language) described by an NFA can be 

described by an equivalent regex!
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Bears|Beets|Battle*



NFA Example

▪ For each input character, check if an active state 

can make a transition

▪ Update states in preparation for next input
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INPUT TEXT: Beets



What is high-level synthesis?

▪ Traditional FPGA development 

describes hardware constructs

▪ Known as Register Transfer Level (RTL)

▪ VHDL and Verilog common examples

▪ High-level synthesis (HLS) abstracts 

some fine-grained optimizations to ease 

development and allow rapid prototyping

▪ Intel provides access to HLS through 

OpenCL and oneAPI

▪ Specifications developed by Khronos Group

▪ oneAPI based on SYCL

9



Putting it all together…

▪ We are creating the accelerators with high-level synthesis
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Regular-Expression Matching

on FPGAs

with High-Level Synthesis

Accelerating
▪ We want to handle enterprise-level data at enterprise-level speeds

▪ We are using regex from the popular NIDS SNORT

▪ We are transforming these regex into state machines (NFAs)

▪ We are accelerating the state machine computations on FPGAs
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HLS Kernels - Structure

▪ HLS allows for C-like coding 

of accelerators

▪ Representing state machines 

requires states and transitions

▪ States are Boolean local 

variables (single bit per state)

▪ Transitions are combinational 

logic (if/else statements)

▪ Source code is generated 

from NFA representation

▪ Often tens of thousands of lines
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States

Transitions



HLS Kernels – OpenCL

▪ Single work-item kernel

▪ Recommended for FPGA 

development

▪ Accelerator fed by burst-

coalesced load-store unit

▪ Load multiple sequential 

addresses to hide DDR latency
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HLS Kernels – Initial performance

▪ Achieves initiation interval (II) of ~1

▪ Infers shift registers for simple repetition
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OpenCL

Maximum Frequency (Mhz) 293

Throughput (Gbps) 2.3

Look-up Tables (LUTs) 102993
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Generating NFA – Multi-character NFA

▪ Input bandwidth can be increased by modifying 

the NFA to take multiple input characters for each 

transition

▪ The transitions in and out of each state are 

concatenated together to double input bandwidth
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Generating NFA – Transition Explosion

▪ Multi-character transformation lead to an explosion 

in the number of transitions
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OpenCL Kernels - Testbed

▪ OpenCL on Arria 10

▪ OpenCL SDK version – 19.4

▪ Arria 10 LUTs – 854,400

▪ Arria 10 manufacturing node – 20nm
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OpenCL Kernels - Performance

▪ Kernel Maximum Frequency
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OpenCL Kernels - Performance

▪ Kernel Throughput
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OpenCL Kernels - Performance

▪ LUT usage
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OpenCL Kernels - Performance

▪ Comparison to Prior Work
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Conclusions

▪ Good throughput scaling for HLS kernels

▪ Unsustainable past 8-character bandwidth

▪ Comparable to similar RTL solutions

▪ Throughput – best in class among similar work

▪ Resources – worst in class among similar work

▪ Throughput Efficiency – near the bottom
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Future Work

▪ Scale throughput past 20Gbps?

▪ Data pre-filtering

▪ Up to 95% of network traffic can be filtered

▪ Bloom filters allow speedy lookups and compress 

memory needs of lookup tables
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NFA 

“Verifier”

Bloom Pre-

Filters

Packet  Flows
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