B = 3 A

NATIONAL TSING HUA UNIVERSITY

PLon

Enabling the Use of C++20 Unseq Execution
Policy for OpenCL

Po-Yao Chang, Tai-Liang Chen, and Jenq-Kuen Lee
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
{pychang, tichen}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

[Motivation }

* (C++ for OpenCL was announced 1n 2020, but
without the support of the standard library as
stated 1n the C++ standard.

* We explore the use of execution policy as in
the C++ parallel library (focused on
execution::unseq from C++20).

* Inspired by OpenCL vector, this paper supports
C++ template of execution::unseq based on
OpenCL vector.

~

[Compilation Flow
C++ for OpenCL compilation flow

clang -cl-std=clc++ -Xclang -finclude-default-header -target spir64 -emit-llvm -c cxx4ocl.cl

cxx4ocl.bc

cxx4ocl.cl

llvm-spirv llvm-spirv cxx4ocl.bc
Host binary : ¥
(calls OpenCL AP!: % As input WO
invokes OpenCL S
driver)

[Unseq with OpenCL Vector }

* This for each call may be vectorized.

std: : for_each(std::execution::unseq, base_ptr,
1824 = 1824, [E]l(autoclk w) {
v = alidx] + b[idx]:

1);

base_ptr +

* OpenCL vector are mapped to LLVM vector

in LLVM IR layer.
e9 = add nsw 1372 X28, X266 - scalar addition
%29 = add nsw <4 x 132> %28, %26 Open ector (intd

[Experimental Results}
Experiment Environments

Platform:
* OpenCL 2.1

 (Clang 10.0.1
* Spirv translator: llvm-spirv (built against LLVM

10.0.1) §
OpenCL devices: g
e Intel(R) CPU Runtime for OpenCL(TM) 3

Applications/Intel(R) Core(TM) 17-7700 CPU @
3.60GHz

* Intel(R) OpenCL HD Graphics/Intel(R) Gen9 HD
Graphics NEO

[Procedural Steps}

Step1 _Define unseq object

This step defines the types as follows and a global
object unseq of type unsequenced policy
accordingly.

struct unsequenced_policy {};
struct seguenced_policy {};
constexpr unsequenced_policy unseqg{}:

Step2 OpenCL kernel with execution policy

Overload functions with execution policy types.

__kernel void vadd{(__global DataTy const#® a, __global
Dataly const+ b, __global Datalyw+ c) {
auto 1dx = get_ Ghal 1d (@) ;
auto base_ptr = ¢ + idx:
std:: for_each(std::execution::unseq, base_ptr, base_ptr

+ 1824 » 1824, [El(autodk w) {
v = alidx]) + b[idx]:
1)
h

Step3 Using directive to vector

* Clang would then inline the function object call
operator as 1n f(*first) and vectorize the loop
with clang directive.

* The resulting LLVM bitcode would contain
LLVM vector types .

* OpenCL vector types also get lowered to
LLVM vector type.

template <typename
Function for_each(execution:

Forwarditerator, typename Function?>
-unsequenced_policy exec
ForwardIterator first,
ForwardIterator last, Function f) {
#pragma clang lecop vectorize(enable) vectorize_width(
'FIE':.._-II].I:IT_l..:'
for (: first
f(xfirst);
return f;

I

= last: ++first)

* In the case of SAD on GPU, vector width

4 results 1n a speedup of 3.4, and vector
width 16 results 1n 6.9X speedup

o = N w Y (%2} ()] ~ (0¢]

1D convolution on

6.9

3.4
3.1 3.25

2.7

1.7 1.8 1.7

11
1 1 1 1 1 1 0.7 1 1

13 1.5

bilater

SAD on GPU col2im
ecto Wg h1l

1D convolution on )
ctor width 4

SAE? onI,CPU
GPU aseline

alFi It -~ 8u permute
CPU



